Analysis of Shear Capacity of Prestressed Concrete Bridge Girders

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Analysis of Shear Capacity of Prestressed Concrete Bridge Girders

Author(s): M.-K. Park, E. O. L. Lantsoght, G. I. Zarate Garnica, Y. Yang, and H. Sliedrecht

Publication: Structural Journal

Volume: 118

Issue: 6

Appears on pages(s): 75-89

Keywords: bridge assessment; concrete bridges; flexure-shear; large-scale testing; prestressed concrete; shear; shear-compression; shear-tension

DOI: 10.14359/51733000

Date: 11/1/2021

Abstract:
For the assessment of existing slab-between-girder bridges, the shear capacity and failure mode are under discussion. In particular, preliminary assessment calculations showed that the critical failure mode of the girders is shear-tension. In this paper, four girders taken from a demolished bridge that were tested in the lab are analyzed according to existing codes. The comparison between the experiments and the analysis shows that the Dutch RBK provisions are conservative and the ACI 318-19 provisions result in good predictions of the shear capacity at inclined cracking and at ultimate. These observations are then combined into recommendations for the assessment of prestressed concrete girders in existing slab-between-girder bridges for shear cracking and the ultimate shear capacity.

Related References:

ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19),” American Concrete Institute, Farmington Hills, MI, 624 pp.

Bundesministerium für Verkehr, Bau und Stadtentwicklung - Abteilung Straßenbau, 2011, “Richtlinie zur Nachrechnung von Straßenbrücken im Bestand (Nachrechnungsrichtlinie),” edition 05/2011, 108 pp. (in German)

CAN/CSA A23.3-04, 2004, “Design of Concrete Structures,” Canadian Standards Association, Mississauga, ON, Canada, 240 pp.

Chehab, A. I., and Eamon, C. D., 2019, “Reliability-Based Shear Rating of Prestressed Concrete Bridge Girders Considering Capacity Adjustment Factor,” ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, V. 5, No. 2, June, p. 04019006. doi: 10.1061/AJRUA6.0001009

Dunkelberg, D.; Sneed, L. H.; Zilch, K.; and Reineck, K.-H., 2018, “The 2015 ACI-DAfStb Database of Shear Tests on Slender Prestressed Concrete Beams without Stirrups—Overview and Evaluation of Current Design Approaches,” Structural Concrete, V. 19, No. 6, Dec., pp. 1740-1759. doi: 10.1002/suco.201700216

Eamon, C. D.; Parra-Montesinos, G.; and Chehab, A., 2014, “Evaluation of Prestressed Concrete Beams in Shear,” Final report, prepared for Michigan Department of Transportation, Wayne State University, Detroit, MI, 230 pp.

fib, 2012, “Model Code 2010: Final Draft,” Fédération Internationale du Béton, Lausanne, Switzerland, 676 pp.

Hegger, J., and Herbrand, M., 2016, “Erweiterte Nachweiskonzepte nach Stufe 4 der Nachrechnungsrichtlinie,” Conference: 2. Brückenkolloquium Technische Akademie Esslingen, Ostfildern, Germany, 8 pp. (in German)

Hegger, J.; Maurer, R.; Zilch, K.; Herbrand, M.; Kolodziejczyk, A.; and Dunkelberg, D., 2014, “Beurteilung der Querkrafttragfähigkeit des Längssystems von Spannbetonbrücken im Bestand,” Bauingenieur, V. 12, pp. 500-510. (in German)

König, G., and Fischer, J., 1995, “Model Uncertainties concerning Design Equations for the Shear Capacity of Concrete Members without Shear Reinforcement,” CEB Bulletin No. 224: Model Uncertainties and Concrete Barriers for Environmental Protection, July, pp. 49-100.

Lantsoght, E. O. L.; de Boer, A.; and van der Veen, C., 2017, “Levels of Approximation for the Shear Assessment of Reinforced Concrete Slab Bridges,” Structural Concrete, V. 18, No. 1, pp. 143-152. doi: 10.1002/suco.201600012

Lantsoght, E. O. L.; Zarate, G.; Zhang, F.; Park, M.-K.; Yang, Y.; and Sliedrecht, H., 2021, “Shear Experiments of Prestressed Concrete Bridge Girders,” ACI Structural Journal, V. 118, No. 3, May, pp. 117-130. doi: 10.14359/51729360

Marzahn, G., 2011, “Zur Richtlinie für die Nachrechnung von Straßenbrücken im Bestand (Nachrechnungsrichtlinie),” Beton- und Stahlbetonbau, V. 106, No. 11, Nov., pp. 730-735. (in German) doi: 10.1002/best.201100068

Migalski, J., 2020, “Analytical, Numerical and Experimental Analysis of Helperzoom Post-Tensioned T-Girders,” MSc, Delft University of Technology, Delft, the Netherlands, 205 pp.

NEN-EN 1992-1-1:2005, 2005, “Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings,” European Committee for Standardization (CEN), Brussels, Belgium, 229 pp.

Rahal, K. N., and Collins, M. P., 1999, “Background to the General Method of Shear Design in the 1994 CSA-A23.3 Standard,” Canadian Journal of Civil Engineering, V. 26, No. 6, Dec., pp. 827-839. doi: 10.1139/l99-050

RBK 1.1 RTD 1006:2013, 2013, “Guidelines Assessment Bridges - Assessment of Structural Safety of an Existing Bridge at Reconstruction, Usage and Disapproval,” Rijkswaterstaat, Utrecht, the Netherlands, 117 pp. (in Dutch)

Reineck, K.-H., 2009, “Review of Basic Assumptions for the Shear Design,” Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures, New Orleans, LA, pp. 367-384.

Roosen, M. A.; van der Veen, C.; Hordijk, D. A.; and Hendriks, M. A. N., 2019a, “Resistance to Diagonal Tension Cracking of Single Span Prestressed Girders,” Seventh International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), Cape Town, South Africa, Sept., pp. 1345-1349.

Roosen, M. A.; van der Veen, C.; Hordijk, D. A.; and Hendriks, M. A. N., 2019b, “Shear Tension Resistance of Prestressed Girders with a Low Stirrup Ratio,” Seventh International Conference on Structural Engineering, Mechanics and Computation (SEMC 2019), Sept., Cape Town, South Africa, pp. 2186-2191.

Rupf, M.; Fernández Ruiz, M.; and Muttoni, A., 2013, “Post-Tensioned Girders with Low Amounts of Shear Reinforcement: Shear Strength and Influence of Flanges,” Engineering Structures, V. 56, Nov., pp. 357-371.

Vecchio, F. J., and Collins, M. P., 1986, “The Modified Compression-Field Theory for Reinforced-Concrete Elements Subjected to Shear,” ACI Journal Proceedings, V. 83, No. 2, Mar.-Apr., pp. 219-231.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer