Title:
Improving Distributed Fiber-Optic Sensor Measures by Digital Image Correlation: Two-Stage Structural Health Monitoring
Author(s):
Maurizio Morgese, Marco Domaneschi, Farhad Ansari, Gian Paolo Cimellaro, and Daniele Inaudi
Publication:
Structural Journal
Volume:
118
Issue:
6
Appears on pages(s):
91-102
Keywords:
cracks; digital image correlation (DIC); fiber-optic sensors (FOSs); reinforced concrete (RC) elements; structural health monitoring (SHM)
DOI:
10.14359/51732994
Date:
11/1/2021
Abstract:
This paper deals with the integrated use of distributed fiber-optic sensors and digital image correlation techniques to develop a two-stage monitoring method for damage detection, localization, and quantification. The proposed methodology was applied in the laboratory on reinforced concrete beam specimens and is suitable for further field developments in concrete structures of large dimensions. The first stage is based on distributed strain monitoring through Brillouin scattering-based fiber-optic sensors to detect and locate potential damage zones within the entire structure, while the second focuses on verification of the critical regions identified by the optical-fiber sensor using the digital image correlation technique.
Related References:
1. Gkoumas, K.; Marques Dos Santos, F. L.; Van Balen, M.; Tsakalidis, A.; Ortega Hortelano, A.; Grosso, M.; Haq, A.; and Pekar, F., “Research and Innovation in Bridge Maintenance, Inspection and Monitoring,” EUR 29650 EN, Publications Office of the European Union, Luxembourg, 2019. doi: 10.2760/06996710.2760/069967
2. Richard Pérez-Peña, “After Italy Collapse, Europe Asks: How Safe Are Our Bridge?” The New York Times, https://www.nytimes.com/2018/08/21/world/europe/genoa-bridge-collapse.html. (last accessed Sept. 1, 2021)
3. Nagarajaiah, S., and Erazo, K., “Structural Monitoring and Identification of Civil Infrastructure in the United States,” Structural Monitoring and Maintenance, V. 3, No. 1, 2016, pp. 51-69. doi: 10.12989/smm.2016.3.1.051
4. Valigura, J.; Liel, A. B.; and Sideris, P., “Risk-Based Assessment of Seismic Repair Costs for Reinforced Concrete Bridges Considering Competing Repair Strategies,” Journal of Bridge Engineering, ASCE, V. 24, No. 11, 2019, p. 04019108. doi: 10.1061/(ASCE)BE.1943-5592.0001466
5. Cimellaro, G. P.; Scura, G.; Renschler, C. S.; Reinhorn, A. M.; and Kim, H. U., “Rapid Building Damage Assessment System Using Mobile Phone Technology,” Earthquake Engineering and Engineering Vibration, V. 13, No. 3, 2014, pp. 519-533. doi: 10.1007/s11803-014-0259-4
6. Morgese, M.; Ansari, F.; Domaneschi, M.; and Cimellaro, G. P., “Post-Collapse Analysis of Morandi’s Polcevera Viaduct in Genova Italy,” Journal of Civil Structural Health Monitoring, V. 10, No. 1, 2020, pp. 69-85. doi: 10.1007/s13349-019-00370-7
7. Glisic, B., “Long-Term Monitoring of Civil Structures and Infrastructure Using Long-Gauge Fiber Optic Sensors,” 18th IEEE Sensors, SENSORS 2019, Montreal, QC, Canada, 2019
8. Unger, J. F.; Teughels, A.; and De Roeck, G., “System Identification and Damage Detection of a Prestressed Concrete Beam,” Journal of Structural Engineering, ASCE, V. 132, No. 11, 2006, pp. 1691-1698. doi: 10.1061/(ASCE)0733-9445(2006)132:11(1691)
9. Oskoui, E. A.; Taylor, T.; and Ansari, F., “Method and Monitoring Approach for Distributed Detection of Damage in Multi-Span Continuous Bridges,” Engineering Structures, V. 189, June 2019, pp. 385-395. doi: 10.1016/j.engstruct.2019.02.037
10. Casas, J. R., and Cruz, P. J. S., “Fiber Optic Sensors for Bridge Monitoring,” Journal of Bridge Engineering, ASCE, V. 8, No. 6, 2003, pp. 362-373. doi: 10.1061/(ASCE)1084-0702(2003)8:6(362)
11. Barrias, A.; Rodriguez, G.; Casas, J. R.; and Villalba, S., “Application of Distributed Optical Fiber Sensors for the Health Monitoring of Two Real Structures in Barcelona,” Structure and Infrastructure Engineering, V. 14, No. 7, 2018, pp. 967-985. doi: 10.1080/15732479.2018.1438479
12. Güemes, A.; Fernández-López, A.; and Soller, B., “Optical Fiber Distributed Sensing – Physical Principles and Applications,” Structural Health Monitoring, V. 9, No. 3, 2010, pp. 233-245. doi: 10.1177/1475921710365263
13. Talebinejad, I.; Fischer, C.; and Ansari, F., “A Hybrid Approach for Safety Assessment of Double Span Masonry Vaults of the Brooklyn Bridge,” Journal of Civil Structural Health Monitoring, V. 1, No. 1-2, 2011, pp. 3-15. doi: 10.1007/s13349-011-0003-y
14. Li, H.-N.; Li, D.-S.; and Song, G.-B., “Recent Applications of Fiber Optic Sensors to Health Monitoring in Civil Engineering,” Engineering Structures, V. 26, No. 11, 2004, pp. 1647-1657. doi: 10.1016/j.engstruct.2004.05.018
15. Oskoui, E. A.; Taylor, T.; and Ansari, F., “Reference-Free Dynamic Distributed Monitoring of Damage in Multispan Bridges,” Journal of Structural Engineering, ASCE, V. 147, No. 1, 2021, p. 04020292. doi: 10.1061/(ASCE)ST.1943-541X.0002858
16. Bien, J.; Elfgren, L.; and Olofsson, J., eds., Sustainable Bridges. Assessment for Future Traffic Demands and Longer Lives, Dolnoslaskie Wydawnictwo Edukacyjne, Wrocław, Poland, 2007, 490 pp.
17. Limongelli, M. P., and Orcesi, A., “Report of the Innovation Task Group: COST TU 1406, Quality Specifications for Roadway Bridges,” Eurostruct, Guimarães, Portugal, 2019, 94 pp., https://eurostruct.org/repository/tu1406-report-innovation-subgroup-v2.pdf.
18. Ramos, T.; Furtado, A.; Eslami, S.; Alves, S.; Rodrigues, H.; Arêde, A.; Tavares, P. J.; and Moreira, P. M. G. P., “2D and 3D Digital Image Correlation in Civil Engineering – Measurements in a Masonry Wall,” Procedia Engineering, V. 114, 2015, pp. 215-222. doi: 10.1016/j.proeng.2015.08.061
19. Yue, J. G.; Kunnath, S. K.; and Xiao, Y., “Uniaxial Concrete Tension Damage Evolution Using Acoustic Emission Monitoring,” Construction and Building Materials, V. 232, Jan. 2020, p. 117281. doi: 10.1016/j.conbuildmat.2019.117281
20. Nonis, C.; Niezrecki, C.; Yu, T.-Y.; Ahmed, S.; Su, C.-F.; and Schmidt, T., “Structural Health Monitoring of Bridges using Digital Image Correlation,” Health Monitoring of Structural and Biological Systems 2013, Proceedings, V. 8695, Apr. 2013, 13 pp. doi: 10.1117/12.2009647
21. Mahal, M.; Blanksvärd, T.; Täljsten, B.; and Sas, G., “Using Digital Image Correlation to Evaluate Fatigue Behavior of Strengthened Reinforced Concrete Beams,” Engineering Structures, V. 105, 2015, pp. 277-288. doi: 10.1016/j.engstruct.2015.10.017
22. Sas, G.; Blanksvärd, T.; Enochsson, O.; Täljsten, B.; and Elfgren, L., “Photographic Strain Monitoring During Full-Scale Failure Testing of Örnsköldsvik Bridge,” Journal of Structural Health Monitoring, V. 11, No. 4, 2012, pp. 489-498. doi: 10.1177/1475921712438568
23. Scarella, A.; Salamone, G.; Babanajad, S. K.; De Stefano, A.; and Ansari, F., “Dynamic Brillouin Scattering-Based Condition Assessment of Cables in Cable-Stayed Bridges,” Journal of Bridge Engineering, ASCE, V. 22, No. 3, 2017, p. 04016130. doi: 10.1061/(ASCE)BE.1943-5592.0001010
24. Domaneschi, M.; Pellecchia, C.; De Iuliis, E.; Cimellaro, G. P.; Morgese, M.; Khalil, A. A.; and Ansari, F., “Collapse Analysis of the Polcevera Viaduct by the Applied Element Method,” Engineering Structures, V. 214, 2020, p. 110659. doi: 10.1016/j.engstruct.2020.110659
25. Peters, W. H., and Ranson, W. F., “Digital Imaging Techniques in Experimental Stress Analysis,” Optical Engineering, V. 21, No. 3, 1982, p. 213427. doi: 10.1117/12.7972925
26. Sutton, M. A.; Mingqi, C.; Peters, W. H.; Chao, Y. J.; and McNeill, S. R., “Application of an Optimized Digital Correlation Method to Planar Deformation Analysis,” Image and Vision Computing, V. 4, No. 3, 1986, pp. 143-150. doi: 10.1016/0262-8856(86)90057-0
27. Hild, F., and Roux, S., “Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties—a Review,” Strain, V. 42, No. 2, 2006, pp. 69-80. doi: 10.1111/j.1475-1305.2006.00258.x
28. Roux, S.; Réthoré, J.; and Hild, F., “Recent Progress in Digital Image Correlation: From Measurement to Mechanical Identification,” Journal of Physics: Conference Series 135, 6th International Conference on Inverse Problems in Engineering: Theory and Practice, Dourdan, France, 2008, 9 pp.
29. Pan, B.; Qian, K.; Xie, H.; and Asundi, A., “Two-Dimensional Digital Image Correlation for In-Plane Displacement and Strain Measurement: A Review,” Measurement Science and Technology, V. 20, No. 6, 2009, p. 062001. doi: 10.1088/0957-0233/20/6/062001
30. Wu, L.-J.; Casciati, F.; and Casciati, S., “Dynamic Testing of a Laboratory Model via Vision-Based Sensing,” Engineering Structures, V. 60, Feb. 2014, pp. 113-125. doi: 10.1016/j.engstruct.2013.12.002
31. Dworakowski, Z.; Kohut, P.; Gallina, A.; Holak, K.; and Uhl, T., “Vision-Based Algorithms for Damage Detection and Localization in Structural Health Monitoring,” Structural Control and Health Monitoring, V. 23, No. 1, May 2015, pp. 35-50.
32. Feng, D., and Feng, M. Q., “Computer Vision for SHM of Civil Infrastructure: From Dynamic Response Measurement to Damage Detection – A Review,” Engineering Structures, V. 156, Feb. 2018, pp. 105-117. doi: 10.1016/j.engstruct.2017.11.018
33. Niezrecki, C.; Baqersad, J.; and Sabato, A., “Digital Image Correlation Techniques for NDE and SHM,” Handbook of Advanced Non-Destructive Evaluation, Springer, 2018, pp. 1-46.
34. Pan, B., “Digital Image Correlation for Surface Deformation Measurement: Historical Developments, Recent Advances and Future Goals,” Measurement Science and Technology, V. 29, No. 8, 2018, p. 082001. doi: 10.1088/1361-6501/aac55b
35. Tang, Z.-Z.; Liang, J.; Xiao, Z.-Z.; Guo, C.; and Hu, H., “Three-Dimensional Digital Image Correlation System for Deformation Measurement in Experimental Mechanics,” Optical Engineering, V. 49, No. 10, 2010, p. 103601. doi: 10.1117/1.3491204
36. Blaber, J.; Adair, B.; and Antoniou, A., “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,” Experimental Mechanics, V. 55, No. 6, July 2015, pp. 1105-1122.
37. Sutton, M. A.; McNeill, S. R.; Helm, J. D.; and Chao, Y. J., “Advances in Two-Dimensional and Three-Dimensional Computer Vision,” Photomechanics. Topics in Applied Physics, V. 77, Springer, 2000, pp 323-372.
38. Luo, P. F.; Chao, Y. J.; Sutton, M. A.; and Peters, W. H., III, “Accurate Measurement of Three-Dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision,” Experimental Mechanics, V. 33, No. 2, 1993, pp. 123-132. doi: 10.1007/BF02322488
39. Helm, J. D.; McNeill, S. R.; and Sutton, M. A., “Improved Three-Dimensional Image Correlation for Surface Displacement Measurement,” Optical Engineering, V. 35, No. 7, 1996, p. 1911. doi: 10.1117/1.600624
40. Garcia, D.; Orteu, J. J.; and Penazzi, L., “A Combined Temporal Tracking and Stereo-Correlation Technique for Accurate Measurement of 3D Displacement: Application to Sheet Metal Forming,” Journal of Materials Processing Technology, V. 125-126, Sept. 2002, pp. 736-742. doi: 10.1016/S0924-0136(02)00380-1
41. Pan, B.; Xie, H. M.; Yang, L. H.; and Wang, Z. Y., “Accurate Measurement of Satellite Antenna Surface Using 3D Digital Image Correlation Technique,” Strain, V. 45, No. 2, 2009, pp. 194-200. doi: 10.1111/j.1475-1305.2008.00450.x
42. Zhang, D. S.; Luo, M.; and Arola, D. D., “Displacement/Strain Measurements Using an Optical Microscope and Digital Image Correlation,” Optical Engineering, V. 45, No. 3, Mar. 2006, p. 2613.
43. Sutton, M. A.; Li, N.; Garcia, D.; Cornille, N.; Orteu, J. J.; McNeill, S. R.; Schreier, H. W.; and Li, X., “Metrology in a Scanning Electron Microscope: Theoretical Developments and Experimental Validation,” Measurement Science and Technology, V. 17, No. 10, 2006, p. 2613. doi: 10.1088/0957-0233/17/10/012
44. Sutton, M. A.; Li, N.; Joy, D. C.; Reynolds, A. P.; and Li, X., “Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements Part I: SEM Imaging at Magnifications from 200 to 10,000,” Experimental Mechanics, V. 47, No. 6, 2007, pp. 775-787. doi: 10.1007/s11340-007-9042-z
45. Sutton, M. A.; Li, N.; Garcia, D.; Cornille, N.; Orteu, J. J.; McNeill, S. R.; Schreier, H. W.; Li, X.; and Reynolds, A. P., “Scanning Electron Microscopy for Quantitative Small and Large Deformation Measurements Part II: Experimental Validation for Magnifications from 200 to 10,000,” Experimental Mechanics, V. 47, No. 6, 2007, pp. 789-804. doi: 10.1007/s11340-007-9041-0
46. Sun, Y., and Pang, J. H. L., “AFM Image Reconstruction for Deformation Measurements by Digital Image Correlation,” Nanotechnology, V. 17, No. 4, 2006, pp. 933-939. doi: 10.1088/0957-4484/17/4/016
47. Yoneyama, S.; Kikuta, H.; Kitagawa, A.; and Kitamura, K., “Lens Distortion Correction for Digital Image Correlation by Measuring Rigid Body Displacement,” Optical Engineering, V. 45, No. 2, 2006, p. 023602. doi: 10.1117/1.2168411
48. Yoneyama, S.; Kitagawa, A.; Kitamura, K.; and Kikuta, H., “In-Plane Displacement Measurement Using Digital Image Correlation with Lens Distortion Correction,” JSME International Journal. Series A, Solid Mechanics and Material Engineering, V. 49, No. 3, 2006, pp. 458-467. doi: 10.1299/jsmea.49.458
49. Ansari, F., “Application of Laser Speckle Interferometry to Fracture of Concrete,” Proceedings of the Society of Photo-Optical Instrumentation Engineers, Southwest Conference on Optics, Albuquerque, NM, V. 0540, 1985, pp. 492-499.
50. Ansari, F., “Stress-Strain Response of Microcracked Concrete in Direct Tension,” ACI Materials Journal, V. 84, No. 6, Nov.-Dec. 1987, pp. 481-490.
51. Ansari, F., “Mechanism of Microcracked Formation in Concrete,” ACI Materials Journal, V. 86, No. 5, Sept.-Oct. 1989, pp. 459-464.
52. Pan, B.; Asundi, A.; Xie, H.; and Gao, J., “Digital Image Correlation Using Iterative Least Squares and Pointwise Least Squares for Displacement Field and Strain Field Measurements,” Optics and Lasers in Engineering, V. 47, No. 7-8, 2009, pp. 865-874. doi: 10.1016/j.optlaseng.2008.10.014
53. Ansari, F., “Practical Implementation of Optical Fiber Sensors in Civil Structural Health Monitoring,” Journal of Intelligent Material Systems and Structures, V. 18, No. 8, 2007, pp. 879-889. doi: 10.1177/1045389X06075760
54. Shi, B.; Sui, H.; Liu, J.; and Zhang, D., “The BOTDR-Based Distributed Monitoring System for Slope Engineering,” The Geological Society of London 2006, IAEG2006 Paper No. 683.
55. Bao, X., and Chen, L., “Recent Progress in Brillouin Scattering Based Fiber Sensors,” Sensors (Basel), V. 11, No. 4, 2011, pp. 4152-4187. doi: 10.3390/s110404152
56. Nazarian, E.; Ansari, F.; Zhang, X.; and Taylor, T., “Detection of Tension Loss in Cable-Stayed Bridges by Distributed Monitoring of Bridge Deck Strains,” Journal of Structural Engineering, ASCE, V. 142, No. 6, 2016.
57. Glišić, B., and Inaudi, D., Fibre Optic Methods for Structural Health Monitoring, John Wiley & Sons, Inc., New York, 2007, 276 pp.
58. “D. M. Aggiornamento delle Norme Tecniche per le Costruzioni [Updating of the Technical Standards for Construction, Italy],” Gazzetta Ufficiale, Jan. 17, 2018, 372 pp. (in Italian)