Title:
Fire Resistance of Concrete Panels Made with Recycled Tire Materials
Author(s):
Camila Simonetti, Bernardo Fonseca Tutikian, and Luiz Carlos Pinto da Silva Filho
Publication:
Materials Journal
Volume:
118
Issue:
5
Appears on pages(s):
173-184
Keywords:
fire resistance; fire safety; precast concrete panels; scrap tires
DOI:
10.14359/51732983
Date:
9/1/2021
Abstract:
The possibility of incorporating scrap tire residue into concrete has already been consolidated in previous studies, but there is a knowledge gap about how concrete made with recycled tire materials behaves when exposed to high temperatures. This study aims to investigate the performance of precast concrete panels made with scrap tire residues when exposed to fire when using recycled steel fiber and recycled rubber aggregates separately. The experimental design consisted of fire resistance tests. Real-scale panels were exposed to the standard fire curve based on ISO 834, measuring the temperatures on the panel surfaces. The recycled steel fiber-reinforced concrete and those containing 5% recycled rubber aggregate presented similar behavior when compared to the
conventional concrete on thermal insulation, integrity, and structural stability. The concrete made with 10% recycled rubber aggregate registered the occurrence of explosive spalling and worse
thermal insulation and integrity.
Related References:
1. Gomes, T. S.; Rezende Neto, G.; Salles, A. C. N.; de Visconte, L. L. Y.; and Pacheco, E. B. A. V. L., “End-of-Life Tire Destination from a Life Cycle Assessment Perspective,” New Frontiers on Life Cycle Assessment—Theory and Application, V. 1, Sept. 2019, pp. 1-15. doi: 10.5772/intechopen.8270210.5772/intechopen.82702
2. Bauer, A. L.; Simonetti, C.; Pacheco, F.; and Tutikian, B. F., “Concretes Made with Recycled Tire Materials at High Temperature: an Overview,” 9th International Conference on Concrete Under Severe Conditions-Environment & Loading, Dec. 2018, 8 pp. doi: 10.31808/5ca6e03c5ca4f0d406ac8897
3. Novak, J., and Kohoutkova, A., “Mechanical Properties of Concrete Composites Subject to Elevated Temperature,” Fire Safety Journal, V. 95, Jan, 2018, pp. 66-76. doi: 10.1016/j.firesaf.2017.10.010
4. Ma, Q.; Guo, R.; Zhao, Z.; Lin, Z.; and He, K., “Mechanical Properties of Concrete at High Temperature: A Review,” Construction and Building Materials, V. 93, Sep, 2015, pp. 371-383. doi: 10.1016/j.conbuildmat.2015.05.131
5. Simonetti, C.; Bauer, A. L.; Gil, A. M.; Pacheco, F.; Kodur, V.; and Tutikian, B. F., “Residual Mechanical Properties of Concretes Made with Steel Fiber Taken from Waste Tires after Exposure to High Temperatures,” 9th International Conference on Concrete Under Severe Conditions-Environment & Loading, Dec. 2018, 10 pp. doi: 10.31808/5ca6e03e5ca4f0d406ac88b3
6. Lau, A., and Anson, M., “Effect of High Temperatures on High Performance Steel Fibre Reinforced Concrete,” Cement and Concrete Research, V. 36, No. 9, 2006, pp. 1698-1707. doi: 10.1016/j.cemconres.2006.03.024
7. Yesilata, B.; Bulut, H.; and Turgut, P., “Experimental Study on Thermal Behavior of a Building Structure Using Rubberized Exterior-Walls,” Energy and Building, V. 43, Mar, 2011, pp. 393-399. doi: 10.1016/j.enbuild.2010.09.031
8. Albuquerque, A. C.; Santos, S. B.; Calmon, J. L.; and Silva Filho, L. C. P., “Thermo-Mechanical Analysis of Mass Concrete Elements Made of Rubberized Concrete,” IBRACON Structural and Material Journal, V. 12, No. 3, 2019, pp. 580-589. doi: 10.1590/s1983-41952019000300008
9. Hernández-Olivares, F., and Barluenga, G., “Fire Performance of Recycled Rubber-Filled High-Strength Concrete,” Cement and Concrete Research, V. 34, No. 1, 2004, pp. 109-117. doi: 10.1016/S0008-8846(03)00253-9
10. ABNT NBR 10636, “Paredes divisórias sem função estrutural - Determinação da resistência ao fogo: Método de ensaio,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 1989, 7 pp.
11. ISO 834, “Fire-Resistance Tests - Elements of Building Construction - Part 1: General Requirements,” International Organization for Standardization, Geneva, Switzerland, 1991, 53 pp.
12. ABNT NBR NM 248, “Agregados - Determinação da composição granulométrica,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2003, 6 pp.
13. ABNT NBR NM 45, “Agregados - Determinação da massa unitária e do volume de vazios,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2006, 8 pp.
14. ABNT NBR NM 52, “Agregado miúdo - Determinação da massa específica e massa específica aparente,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2009, 6 pp.
15. ABNT NBR NM 53, “Agregado graúdo - Determinação da massa específica, massa específica aparente e absorção de água,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2009, 8 pp.
16. Arf, M.; Abdullah, W.; and Abdulkadir, M. R., “Post-Fire Mechanical Properties of Concrete Made with Recycled Tire Rubber as Fine Aggregate Replacement,” Sulaimani Journal for Engineering Sciences, V. 4, No. 5, Sept. 2017, pp. 74-85. doi: 10.17656/sjes.10060
17. Bolina, F. L.; Gil, A. M.; Fernandes, B.; Hennemann, G. G.; Gonçalves, J.; and Tutikian, B. F., “Influence of Design Durability on Concrete Columns Fire Performance,” Journal of Materials Research and Technology, V. 9, No. 3, 2020, pp. 4968-4977. doi: 10.1016/j.jmrt.2020.03.015
18. Doherty, P.; Ali, F.; Nadjai, A.; and Choi, S., “Explosive Spalling of Concrete Columns with Steel and Polypropylene Fibres Subjected to Severe fire,” Journal of Structural Fire Engineering, V. 3, No. 1, 2012, pp. 95-104. doi: 10.1260/2040-2317.3.1.95
19. Internationale du Betón, F. (fib), “Fire Design of Concrete Structures - Materials, Structures and Modeling - State-of-Art Report,” Bulletin d’information, No. 38, Lausanne, Switzerland, 2007, 97 pp.
20. Simonetti, C.; Bauer, A. L.; Gil, A. M.; Manica, G. C.; and Tutikian, B. F., “Análise térmica de concretos com inserção de resíduos reciclados de pneus inservíveis,” XV Congreso Latino-Americano de Patología de Construcción, Nov. 2019, 10 pp. doi: 10.21041/CONPAT2019/V2PAT29310.21041/CONPAT2019/V2PAT293
21. Scuracchio, C. H.; Waki, D. A.; and Bretas, R. E. S., “Caracterização térmica e reológica de borracha de pneu desvulcanizada por microondas,” Polímeros, V. 16, No. 1, 2006, pp. 46-52. doi: 10.1590/S0104-14282006000100011
22. Menezes, V. J., “Avaliação das emissões oriundas da degradação térmica de pneus,” 2005. 122 f. Dissertação (Mestrado) - Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano. Rio de Janeiro, RJ, Brazil.
23. Hager, I., “Behaviour of Cement Concrete at High Temperature,” Bulletin of the Polish Academy of Sciences. Technical Sciences, V. 61, No. 1, 2013, pp. 145-154. doi: 10.2478/bpasts-2013-0013
24. Manica, G. C.; Bolina, F. L.; Tutikian, B. F.; Oliveira, M.; and Moreira, M. A., “Influence of Curing Time on the Fire Performance of Solid Reinforced Concrete Plates,” Journal of Materials Research and Technology, V. 9, No. 2, 2020, pp. 2506-2512. doi: 10.1016/j.jmrt.2019.12.081
25. Bolina, F. L.; Prager, G. L.; Rodrigues, E.; and Tutikian, B. F., “Avaliação da resistência ao fogo de paredes maciças de concreto armado,” Ambiente Construído, V. 15, No. 4, 2015, pp. 291-305. doi: 10.1590/s1678-86212015000400051