Title:
Internal Curing Water Effect of Superabsorbent Polymer on Microstructure of High-Performance Fine-Grained Concrete
Author(s):
M. A. R. Manzano, Y. S. B. Fraga, E. F. da Silva, R. B. de Oliveira, B. Caicedo Hormaza, and R. D. Toledo Filho
Publication:
Materials Journal
Volume:
118
Issue:
5
Appears on pages(s):
125-135
Keywords:
internal curing; microstructure; superabsorbent polymers
DOI:
10.14359/51732979
Date:
9/1/2021
Abstract:
This study investigates the influence of internal curing water on the compressive strength and microstructure of high-performance cementitious materials. For this, three high-performance fine-grained concrete (HPFC) and cement pastes were prepared. Two reference mixtures were investigated with total water-cement ratios (w/c) of 0.30 and 0.35. The third mixture was prepared with a basic w/c of 0.30 and the addition of 0.3% of superabsorbent polymer (SAP), resulting in a total w/c of 0.35. X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and compressive strength tests were performed. The incorporation of SAP resulted in a refinement of the porous structure of the paste, despite increasing the total porosity. In addition, the paste containing 0.3% SAP resulted in an intermediate calcium hydroxide content compared with the reference pastes. Thus, it was concluded that SAP internal curing water participates in the hydration reactions of the cementitious material.
Related References:
1. Aprianti, S. E., “A Huge Number of Artificial Waste Material Can Be Supplementary Cementitious Material (SCM) for Concrete Production—A Review Part II,” Journal of Cleaner Production, V. 142, Jan. 2017, pp. 4178-4194. doi: 10.1016/j.jclepro.2015.12.115
2. Golewski, G. L., “Evaluation of Morphology and Size of Cracks of the Interfacial Transition Zone (ITZ) in Concrete Containing Fly Ash (FA),” Journal of Hazardous Materials, V. 357, Sept. 2018, pp. 298-304. doi: 10.1016/j.jhazmat.2018.06.016
3. Wu, L.; Farzadnia, N.; Shi, C.; Zhang, Z.; and Wang, H., “Autogenous Shrinkage of High Performance Concrete: A Review,” Construction and Building Materials, V. 149, Sept. 2017, pp. 62-75. doi: 10.1016/j.conbuildmat.2017.05.064
4. Jensen, O. M., and Hansen, P. F., “Autogenous Deformation and RH-Change in Perspective,” Cement and Concrete Research, V. 31, No. 12, 2001, pp. 1859-1865. doi: 10.1016/S0008-8846(01)00501-4
5. Bentur, A.; Igarashi, S. I.; and Kovler, K., “Prevention of Autogenous Shrinkage in High-Strength Concrete by Internal Curing Using Wet Lightweight Aggregates,” Cement and Concrete Research, V. 31, No. 11, 2001, pp. 1587-1591. doi: 10.1016/S0008-8846(01)00608-1
6. Cusson, D., and Hoogeveen, T., “Internal Curing of High-Performance Concrete with Pre-Soaked Fine Lightweight Aggregate for Prevention of Autogenous Shrinkage Cracking,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 757-765. doi: 10.1016/j.cemconres.2008.02.001
7. Castro, J.; Keiser, L.; Golias, M.; and Weiss, J., “Absorption and Desorption Properties of Fine Lightweight Aggregate for Application to Internally Cured Concrete Mixtures,” Cement and Concrete Composites, V. 33, No. 10, 2011, pp. 1001-1008. doi: 10.1016/j.cemconcomp.2011.07.006
8. Golias, M.; Castro, J.; and Weiss, J., “The Influence of the Initial Moisture Content of Lightweight Aggregate on Internal Curing,” Construction and Building Materials, V. 35, Oct. 2012, pp. 52-62. doi: 10.1016/j.conbuildmat.2012.02.074
9. Liu, K.; Yu, R.; Shui, Z.; Li, X.; Guo, C.; Yu, B.; and Wu, S., “Optimization of Autogenous Shrinkage and Microstructure for Ultra-High Performance Concrete (UHPC) Based on Appropriate Application of Porous Pumice,” Construction and Building Materials, V. 214, July 2019, pp. 369-381. doi: 10.1016/j.conbuildmat.2019.04.089
10. Jensen, O. M., and Lura, P., “Techniques and Materials for Internal Water Curing of Concrete,” Materials and Structures, V. 39, No. 9, 2006, pp. 817-825. doi: 10.1617/s11527-006-9136-6
11. Mechtcherine, V.; Gorges, M.; Schroefl, C.; Assmann, A.; Brameshuber, W.; Ribeiro, A. B.; Cusson, D.; Custódio, J.; da Silva, E. F.; Ichimiya, K.; Igarashi, S.; Klemm, A.; Kovler, K.; de Mendonça Lopes, A. N.; Lura, P.; Nguyen, V. T.; Reinhardt, H.-W.; Filho, R. D. T.; Weiss, J.; Wyrzykowski, M.; Ye, G.; and Zhutovsky, S., “Effect of Internal Curing by Using Superabsorbent Polymers (SAP) on Autogenous Shrinkage and Other Properties of a High-Performance Fine-Grained Concrete: Results of a RILEM Round-Robin Test,” Materials and Structures, V. 47, No. 3, 2014, pp. 541-562. doi: 10.1617/s11527-013-0078-5
12. Kang, S.-H.; Hong, S.-G.; and Moon, J., “Absorption Kinetics of Superabsorbent Polymers (SAP) in Various Cement-Based Solutions,” Cement and Concrete Research, V. 97, July 2017, pp. 73-83. doi: 10.1016/j.cemconres.2017.03.009
13. Kang, S.-H.; Hong, S.-G.; and Moon, J., “Importance of Monovalent Ions on Water Retention Capacity of Superabsorbent Polymer in Cement-Based Solutions,” Cement and Concrete Composites, V. 88, Apr. 2018, pp. 64-72. doi: 10.1016/j.cemconcomp.2018.01.015
14. Jensen, O. M., and Hansen, P. F., “Water-Entrained Cement-Based Materials: I. Principles and Theoretical Background,” Cement and Concrete Research, V. 31, No. 4, 2001, pp. 647-654. doi: 10.1016/S0008-8846(01)00463-X
15. Justs, J.; Wyrzykowski, M.; Bajare, D.; and Lura, P., “Internal Curing by Superabsorbent Polymers in Ultra-High Performance Concrete,” Cement and Concrete Research, V. 76, 2015, pp. 82-90. doi: 10.1016/j.cemconres.2015.05.005
16. Schröfl, C.; Mechtcherine, V.; and Gorges, M., “Relation between the Molecular Structure and the Efficiency of Superabsorbent Polymers (SAP) as Concrete Admixture to Mitigate Autogenous Shrinkage,” Cement and Concrete Research, V. 42, No. 6, 2012, pp. 865-873. doi: 10.1016/j.cemconres.2012.03.011
17. Liu, J.; Farzadnia, N.; Shi, C.; and Ma, X., “Shrinkage and Strength Development of UHSC Incorporating a Hybrid System of SAP and SRA,” Cement and Concrete Composites, V. 97, Mar. 2019, pp. 175-189. doi: 10.1016/j.cemconcomp.2018.12.029
18. Baloch, H.; Usman, M.; Rizwan, S. A.; and Hanif, A., “Properties Enhancement of Super Absorbent Polymer (SAP) Incorporated Self-Compacting Cement Pastes Modified by Nano Silica (NS) Addition,” Construction and Building Materials, V. 203, Apr. 2019, pp. 18-26. doi: 10.1016/j.conbuildmat.2019.01.096
19. Liu, J.; Farzadnia, N.; Shi, C.; and Ma, X., “Effects of Superabsorbent Polymer on Shrinkage Properties of Ultra-High Strength Concrete under Drying Condition,” Construction and Building Materials, V. 215, Aug. 2019, pp. 799-811. doi: 10.1016/j.conbuildmat.2019.04.237
20. Tu, W.; Zhu, Y.; Fang, G.; Wang, X.; and Zhang, M., “Internal Curing of Alkali-Activated Fly Ash-Slag Pastes Using Superabsorbent Polymer,” Cement and Concrete Research, V. 116, Feb. 2019, pp. 179-190. doi: 10.1016/j.cemconres.2018.11.018
21. Yang, J.; Liu, L.; Liao, Q.; Wu, J.; Li, J.; and Zhang, L., “Effect of Superabsorbent Polymers on the Drying and Autogenous Shrinkage Properties of Self-Leveling Mortar,” Construction and Building Materials, V. 201, Mar. 2019, pp. 401-407. doi: 10.1016/j.conbuildmat.2018.12.197
22. Zhutovsky, S., and Kovler, K., “Effect of Internal Curing on Durability-Related Properties of High Performance Concrete,” Cement and Concrete Research, V. 42, No. 1, 2012, pp. 20-26. doi: 10.1016/j.cemconres.2011.07.012
23. Hasholt, M. T.; Jensen, O. M.; Kovler, K.; and Zhutovsky, S., “Can Superabsorent Polymers Mitigate Autogenous Shrinkage of Internally Cured Concrete without Compromising the Strength?,” Construction and Building Materials, V. 31, June 2012, pp. 226-230. doi: 10.1016/j.conbuildmat.2011.12.062
24. Snoeck, D.; Schaubroeck, D.; Dubruel, P.; and De Belie, N., “Effect of High Amounts of Superabsorbent Polymers and Additional Water on the Workability, Microstructure and Strength of Mortars with a Water-to-Cement Ratio of 0.50,” Construction and Building Materials, V. 72, Dec. 2014, pp. 148-157. doi: 10.1016/j.conbuildmat.2014.09.012
25. Justs, J.; Wyrzykowski, M.; Winnefeld, F.; Bajare, D.; and Lura, P., “Influence of Superabsorbent Polymers on Hydration of Cement Pastes with Low Water-to-Binder Ratio,” Journal of Thermal Analysis and Calorimetry, V. 115, No. 1, 2014, pp. 425-432. doi: 10.1007/s10973-013-3359-x
26. Esteves, L. P., “Internal Curing in Cement-Based Materials,” PhD dissertation, University of Aveiro, Aveiro, Portugal, 2009, 175 pp.
27. Esteves, L. P., “On the Hydration of Water-Entrained Cement–Silica Systems: Combined SEM, XRD and Thermal Analysis in Cement Pastes,” Thermochimica Acta, V. 518, No. 1-2, 2011, pp. 27-35. doi: 10.1016/j.tca.2011.02.003
28. Snoeck, D.; Velasco, L. F.; Mignon, A.; Van Vlierberghe, S.; Dubruel, P.; Lodewyckx, P.; and De Belie, N., “The Effects of Superabsorbent Polymers on the Microstructure of Cementitious Materials Studied by Means of Sorption Experiments,” Cement and Concrete Research, V. 77, Nov. 2015, pp. 26-35. doi: 10.1016/j.cemconres.2015.06.013
29. Roszczynialski, W., “Determination of Pozzolanic Activity of Materials by Thermal Analysis,” Journal of Thermal Analysis and Calorimetry, V. 70, No. 2, 2002, pp. 387-392. doi: 10.1023/A:1021660020674
30. Klemm, A. J., and Sikora, K. S., “The Effect of Superabsorbent Polymers (SAP) on Microstructure and Mechanical Properties of Fly Ash Cementitious Mortars,” Construction and Building Materials, V. 49, Dec. 2013, pp. 134-143. doi: 10.1016/j.conbuildmat.2013.07.039
31. Kong, X.; Zhang, Z.; and Lu, Z., “Effect of Pre-Soaked Superabsorbent Polymer on Shrinkage of High-Strength Concrete,” Materials and Structures, V. 48, No. 9, 2015, pp. 2741-2758. doi: 10.1617/s11527-014-0351-2
32. Farzanian, K.; Pimenta Teixeira, K.; Perdigão Rocha, I.; De Sa Carneiro, L.; and Ghahremaninezhad, A., “The Mechanical Strength, Degree of Hydration, and Electrical Resistivity of Cement Pastes Modified with Superabsorbent Polymers,” Construction and Building Materials, V. 109, Apr. 2016, pp. 156-165. doi: 10.1016/j.conbuildmat.2015.12.082
33. Reinhardt, H.-W., and Assmann, R. A., “The Effect of SAPs on Drying Shrinkage, Porosity and Setting of Concrete (Pro077),” International RILEM Conference on Material Science, V. III, 2010, pp. 155-162.
34. Jensen, O. M., and Hansen, P. F., “Water-Entrained Cement-Based Materials: II. Experimental Observations,” Cement and Concrete Research, V. 32, No. 6, 2002, pp. 973-978. doi: 10.1016/S0008-8846(02)00737-8
35. Secrieru, E.; Mechtcherine, V.; Schröfl, C.; and Borin, D., “Rheological Characterisation and Prediction of Pumpability of Strain-Hardening Cement-Based-Composites (SHCC) with and without Addition of Superabsorbent Polymers (SAP) at Various Temperatures,” Construction and Building Materials, V. 112, June 2016, pp. 581-594. doi: 10.1016/j.conbuildmat.2016.02.161
36. Hasholt, M. T., and Jensen, O. M., “Chloride Migration in Concrete with Superabsorbent Polymers,” Cement and Concrete Composites, V. 55, Jan. 2015, pp. 290-297. doi: 10.1016/j.cemconcomp.2014.09.023
37. Ma, X.; Liu, J.; Wu, Z.; and Shi, C., “Effects of SAP on the Properties and Pore Structure of High Performance Cement-Based Materials,” Construction and Building Materials, V. 131, Jan. 2017, pp. 476-484. doi: 10.1016/j.conbuildmat.2016.11.090
38. Sikora, K. S., and Klemm, A. J., “Effect of Superabsorbent Polymers on Workability and Hydration Process in Fly Ash Cementitious Composites,” Journal of Materials in Civil Engineering, ASCE, V. 27, No. 5, 2015, p. 04014170. doi: 10.1061/(ASCE)MT.1943-5533.0001122
39. NBR 16697:2018, “Cimento Portland—Requisitos [Portland Cement—Requirements],” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2018.
40. ASTM C150/C150M-19, “Standard Specification for Portland Cement,” ASTM International, West Conshohocken, PA, 2019, 10 pp.
41. NBR 7211:2009, “Agregados para Concreto—Especificação [Aggregates for Concrete—Specification],” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2009.
42. Manzano, M. A. R.; Neto, W. N. A.; Silva, E. F.; and Lopes, A. N. M., “Análise da Caracterização de um Polímero Superabsorvente Utilizado em Materiais Cimentícios (CONPAT 2015),” Lisboa, Portugal, 2015, pp. 1-8.
43. Mechtcherine, V., and Reinhardt, H.-W., eds., State-of-the-Art Report of the Rilem Technical Committee 225-SAP: Application of Superabsorbent Polymers (SAP) in Concrete Construction, Springer, London, UK, 2012.
44. Lopes, A. N. M., “Mitigation of Autogenous Shrinkage in High Strength Concrete Using Shrinkage-Reducing Admixture and Its Macro and Microstructural Effects,” PhD thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2011. (in Portuguese)
45. Loukili, A.; Khelidj, A.; and Richard, P., “Hydration Kinetics, Change of Relative Humidity, and Autogenous Shrinkage of Ultra-High-Strength Concrete,” Cement and Concrete Research, V. 29, No. 4, 1999, pp. 577-584. doi: 10.1016/S0008-8846(99)00022-8
46. Da Silva Rêgo, J. H., “As cinzas de casca de arroz (CCAs) amorfa e cristalina como adição mineral ao cimento—Aspectos de microestrutura das pastas [Amorphous and Crystalline Rice Husk Ashes (RHA) Used as Mineral Admixture to Cement—Aspects of the Paste Microestrutures],” PhD thesis, University of Brasília, Brasília, Brazil, 2004.
47. Taylor, H. F. W., Cement Chemistry, second edition, Thomas Telford, London, UK, 1997, 459 pp.
48. Filho, J. H.; Gobbi, A.; Pereira, E.; Quarcioni, V. A.; and Farias de Medeiros, M. H., “Atividade pozolânica de adições minerais para cimento portland (Parte i): índice de atividade pozolânica (IAP) com cal, difração de raios-x (DRX), termogravimetria (TG/DTG) e chapelle modificado,” Revista Matéria, V. 22, No. 3, 2017, pp. 1-18.
49. Alonso-Domínguez, D.; Álvarez-Serrano, I.; Reyes, E.; and Moragues, A., “New Mortars Fabricated by Electrostatic Dry Deposition of Nano and Microsilica Additions: Enhanced Properties,” Construction and Building Materials, V. 135, Mar. 2017, pp. 186-193. doi: 10.1016/j.conbuildmat.2017.01.011
50. Pane, I., and Hansen, W., “Investigation of Blended Cement Hydration by Isothermal Calorimetry and Thermal Analysis,” Cement and Concrete Research, V. 35, No. 6, 2005, pp. 1155-1164. doi: 10.1016/j.cemconres.2004.10.027
51. Monteagudo, S. M.; Moragues, A.; Gálvez, J. C.; Casati, M. J.; and Reyes, E., “The Degree of Hydration Assessment of Blended Cement Pastes by Differential Thermal and Thermogravimetric Analysis. Morphological Evolution of the Solid Phases,” Thermochimica Acta, V. 592, Sept. 2014, pp. 37-51. doi: 10.1016/j.tca.2014.08.008
52. Zhang, X.; Du, X.; Zhao, X.; Zhang, R.; Hou, P.; Zhou, Z.; and Cheng, X., “The Synergistic Effect of Nano-SiO2 with Silica Fume in Cement-Based Material,” Journal of Sustainable Cement-Based Materials, V. 6, No. 4, 2017, pp. 267-279. doi: 10.1080/21650373.2016.1262799
53. Fraga, Y. S. B.; Rêgo, J. H. S.; Capuzzo, V. M. S.; and Andrade, D. S., “Efeito da ultrasonicação da sílica ativa e da nanossílica coloidal em pastas de cimento,” Revista Matéria, V. 25, No. 4, 2020, pp. 1-16. doi: 10.1590/s1517-707620200004.1147
54. De Souza, L. M. S.; De Moraes Rego Fairbairn, E.; Toledo Filho, R. D.; and Cordeiro, G. C., “Influence of Initial CaO/SiO2 Ratio on the Hydration of Rice Husk Ash-Ca(OH)2 and Sugar Cane Bagasse ash-Ca(OH)2 Pastes,” Quimica Nova, V. 37, No. 10, 2014, pp. 1600-1605.
55. Justs, J.; Wyrzykowski, M.; Winnefeld, F.; Bajare, D.; and Lura, P., “Influence of Superabsorbent Polymers on Hydration of Cement Pastes with Low Water-to-Binder Ratio,” Journal of Thermal Analysis and Calorimetry, V. 115, No. 1, 2014, pp. 425-432.
56. Kang, S. H.; Hong, S. G.; and Moon, J., “Importance of Drying to Control Internal Curing Effects on Field Casting Ultra-High Performance Concrete,” Cement and Concrete Research, V. 108, June 2018, pp. 20-30. doi: 10.1016/j.cemconres.2018.03.008
57. Manzano, M. A. R., “Estudo experimental de materiais cimentícios de alta resistência modificados com polímetros superabsorventes (PSAs) como agentes de cura interna [Experimental Study of High Strength Cementitious Materials Modified with Superabsorbent Polymers (SAP) as Internal Curing Agents],” PhD thesis, University of Brasília, Brasília, Brazil, 2016, 351 pp.
58. Lam, H., “Effect of Internal Curing Methods on Restrained Shrinkage and Permeability,” University of Toronto, Toronto, ON, Canada, 2005.
59. Wang, F.; Yang, J.; Hu, S.; Li, X.; and Cheng, H., “Influence of Superabsorbent Polymers on the Surrounding Cement Paste,” Cement and Concrete Research, V. 81, Mar. 2016, pp. 112-121. doi: 10.1016/j.cemconres.2015.12.004
60. Mindess, S.; Young, J. F.; and Darwin, D., Concrete, second edition, Prentice Hall, Upper Saddle River, NJ, 2002, 644 pp.
61. Kumar, R., and Bhattacharjee, B., “Study on Some Factors Affecting the Results in the Use of MIP Method in Concrete Research,” Cement and Concrete Research, V. 33, No. 3, 2003, pp. 417-424. doi: 10.1016/S0008-8846(02)00974-2