Effect of Different Metakaolins on Chloride-Related Durability of Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Effect of Different Metakaolins on Chloride-Related Durability of Concrete

Author(s): Oswaldo Cascudo, Rodrigo Teodoro, Andrielli M. de Oliveira, and Helena Carasek

Publication: Materials Journal

Volume: 118

Issue: 3

Appears on pages(s): 3-14

Keywords: amorphous content; chloride migration; durability; electrical resistivity; metakaolin; microstructure; performance; porosity

DOI: 10.14359/51732634

Date: 5/1/2021

Abstract:
The main purpose of this work is to evaluate which parameters obtained from the characterization of metakaolins (MKs) (physical, chemical, and mineralogical parameters) have greater relevance in terms of positive impact on concrete durability properties related to chlorides, and which scientific arguments support these results. In parallel, a comparative study between three different MKs was carried out to statistically evaluate the ability that each of these materials must modify and eventually improve concrete durability properties associated with chlorides (electrical resistivity and chloride migration). A discussion of the results was carried out considering evaluations of the microstructure, emphasizing the cementitious systems’ porosity (by mercury intrusion porosimetry [MIP]). It was found that MKs contributed to reduced porosity and refined pores, which made the transport of chlorides significantly more complex, and that some characteristics of MK, especially its amorphous content, have been more decisive for that.

Related References:

1. Baroghel-Bouny, V.; Capra, B.; and Laurens, S., “La Durabilité des Armatures et du Béton D’enrobage,” J.-P. Ollivier, A. Vichot (direct.), La Durabilité des Bétons: Bases scientifiques pour la formulation de bétons durables dans leur environnement. Presses de l’Éc. Nat. Ponts et Chaussées, Paris, France, 2008, pp. 303-385.

2. Liew, K. M.; Sojobi, A. O.; and Zhang, L. W., “Green Concrete: Prospects and Challenges,” Construction and Building Materials, V. 156, 2017, pp. 1063-1095. doi: 10.1016/j.conbuildmat.2017.09.008

3. Ramezanianpour, A. A., and Bahrami, J. H., “Influence of Metakaolin as Supplementary Cementing Material on Strength and Durability of Concretes,” Construction and Building Materials, V. 30, 2012, pp. 470-479. doi: 10.1016/j.conbuildmat.2011.12.050

4. Figueiredo, C. P.; Santos, F. B.; Cascudo, O.; Carasek, H.; Cachim, P.; and Velosa, A., “The Role of Metakaolin in the Protection of Concrete Against the Deleterious Action of Chlorides,” Revista IBRACON de Estruturas e Materiais, V. 7, 2014, pp. 685-708. doi: 10.1590/S1983-41952014000400008

5. Valipour, M.; Pargar, F.; Shekarchi, M.; and Khani, S., “Comparing a Natural Pozzolan, Zeolite, to Metakaolin and Silica Fume in Terms of Their Effect on the Durability Characteristics of Concrete: A Laboratory Study,” Construction and Building Materials, V. 41, 2013, pp. 879-888. doi: 10.1016/j. conbuildmat.2012.11.054.10.1016/j

6. Paiva, H.; Velosa, A.; Cachim, P.; and Ferreira, V. M. M., “Effect of Metakaolin Dispersion on The Fresh and Hardened State Properties of Concrete,” Cement and Concrete Research, V. 42, No. 4, 2012, pp. 607-612. doi: 10.1016/j.cemconres.2012.01.005

7. El-Diadamony, H.; Amer, A. A.; Sokkary, T. M.; and El-Hoseny, S. “Hydration and Characteristics of Metakaolin Pozzolanic Cement Pastes,” HBRC Journal, V. 14, No. 2, 2016, pp. 150-158. doi: 10.1016/J.HBRCJ. 2015.05.005.10.1016/J.HBRCJ

8. Cascudo, O.; Carasek, H.; Yssorche-Cubaynes, A. N. L. M.-P.; and Ollivier, J.-P., “Evaluation of Cover Concrete by Analysis of Chloride Diffusion Coefficients,” Comparative Evaluation of Flexural Fatigue Behavior of High-Volume Fly Ash and Plain Concrete, SP-229, V. M. Malhotra and W. S. Langley, eds., American Concrete Institute, Farmington Hills, MI, 2005, pp. 135-150. doi: 10.14359/14733

9. Shi, Z.; Geiker, M.; De Weerdt, K.; Østnor, T. A.; Lothenbach, B.; Winnefeld, F.; and Skibsted, J., “Role of Calcium on Chloride Binding in Hydrated Portland Cement–Metakaolin–Limestone Blends,” Cement and Concrete Research, V. 95, 2017, pp. 205-216. doi: 10.1016/j.cemconres.2017.02.003

10. Shekarchi, M.; Bonakdar, A.; Bakhshi, M.; Mirdamadi, A.; and Mobasher, B., “Transport Properties in Metakaolin Blended Concrete,” Construction and Building Materials, V. 24, No. 11, 2010, pp. 2217-2223. doi: 10.1016/j.conbuildmat.2010.04.035

11. Maraghechi, H.; Avet, F.; Wong, H.; Kamyab, H.; and Scrivener, K. “Performance of Limestone Calcined Clay Cement (LC3) with Various Kaolinite Contents with Respect to Chloride Transport,” Materials and Structures, V. 51, No. 5, 2018, pp. 1-17. doi: 10.1617/s11527-018-1255-3

12. Ollivier, J.-P., and Torrenti, J.-M., “La Structure Poreuse des Bétons et les Propriétés de Transfert,” J.-P. Ollivier, A. Vichot (direct.), La Durabilité des Bétons: Bases scientifiques pour la formulation de bétons durables dans leur environnement. Presses de l’Éc. Nat. Ponts et Chaussées, Paris, France, 2008, pp. 51-133.

13. Castro, A.; Ferreira, R.; Lopes, A. N. M.; and Cascudo, O., “Relationship between Results of Accelerated and Natural Carbonation in Various Concretes,” International RILEM Conference of Use of Recycled Materials in Buildings and Structures, RILEM, Barcelona, Spain, V. 2, 2004, pp. 800-810.

14. Rashad, A. M., “Metakaolin As Cementitious Material: History, Scours, Production and Composition—Comprehensive Overview,” Construction and Building Materials, V. 41, 2013, pp. 303-318. doi: 10.1016/j.conbuildmat.2012.12.001

15. Badogiannis, E. G.; Sfikas, I. P.; Voukia, D. V.; Trezos, K. G.; and Tsivilis, S. G., “Durability of Metakaolin Self-compacting Concrete,” Construction and Building Materials, V. 82, 2015, pp. 133-141. doi: 10.1016/j.conbuildmat.2015.02.023

16. Wang, Y.; Shui, Z.; Huang, Y.; Sun, T.; and Duan, P., “Properties of Coral Waste-based Mortar Incorporating Metakaolin: Part II. Chloride Migration and Binding Behaviors,” Construction and Building Materials, V. 174, 2018, pp. 433-442. doi: 10.1016/j.conbuildmat.2018.04.076

17. Cheng, S.; Shui, Z.; Sun, T.; Yu, R.; and Zhang, G., “Durability and Microstructure of Coral Sand Concrete Incorporating Supplementary Cementitious Materials,” Construction and Building Materials, V. 171, 2018, pp. 44-53. doi: 10.1016/j.conbuildmat.2018.03.082

18. Duan, P.; Shui, Z.; Chen, W.; and Shen, C., “Effects of Metakaolin, Silica Fume and Slag on Pore Structure, Interfacial Transition Zone and Compressive Strength of Concrete,” Construction and Building Materials, V. 44, 2013, pp. 1-6. doi: 10.1016/j.conbuildmat.2013.02.075

19. San Nicolas, R.; Cyr, M.; and Escadeillas, G., “Performance-Based Approach to Durability of Concrete Containing Flash-calcined Metakaolin as Cement Replacement,” Construction and Building Materials, V. 55, 2014, pp. 313-322. doi: 10.1016/j.conbuildmat.2014.01.063

20. de Oliveira, A. M., and Cascudo, O., “Effect of Mineral Additions Incorporated in Concrete on Thermodynamic and Kinetic Parameters of Chloride-Induced Reinforcement Corrosion,” Construction and Building Materials, V. 192, 2018, pp. 467-477. doi: 10.1016/j.conbuildmat.2018.10.100

21. McPolin, D. O.; Basheer, P. A.; and Long, A. E., “Carbonation and pH in Mortars Manufactured with Supplementary Cementitious Materials,” Journal of Materials in Civil Engineering, ASCE, V. 21, No. 5, 2009, pp. 217-225. doi: 10.1061/(ASCE)0899-1561(2009)21:5(217)

22. Talero, R., “Synergic Effect of Friedel’s Salt from Pozzolan and from OPC Co-precipitating in a Chloride Solution,” Construction and Building Materials, V. 33, 2012, pp. 164-180. doi: 10.1016/j. conbuildmat.2011.12.040

23. ASTM C150M-18, “Standard Specification for Portland Cement,” ASTM International, West Conshohocken, PA, 2018. doi: 10.1520/C0150_C0150M-18

24. ASTM C1069-09, “Standard Test Method for Specific Surface Area of Alumina or Quartz by Nitrogen Adsorption,” ASTM International, West Conshohocken, PA, 2009. doi: 10.1520/c1069-09

25. NBR 15895, “Materiais Pozolânicos – Determinação do Teor de Hidróxido de Cálcio Fixado – Método Chapèlle Modificado,” ABNT, Rio de Janeiro, RJ, Brazil, 2010.

26. Quarcioni, V. A.; Chotoli, F. F.; Coelho, A. C. V.; and Cincotto, M. A., “Indirect and Direct Chapèlle’s Methods for the Determination of Lime Consumption in Pozzolanic Materials,” Revista IBRACON de Estruturas e Materiais, V. 8, No. 1, 2015, pp. 1-7. doi: 10.1590/S1983-41952015000100002

27. Korpa, A., and Trettin, R., “The Influence of Different Drying Methods on Cement Paste Microstructures as Reflected by Gas Adsorption: Comparison Between Freeze-Drying (F-Drying), D-Drying, P-Drying and Oven-Drying Methods,” Cement and Concrete Research, V. 36, No. 4, 2005, pp. 634-649. doi: 10.1016/j.cemconres.2005.11.021

28. ASTM G57, “Standard Test Method for Field Measurement of Soil Resistivity using the Wenner Four-Electrode Method,” ASTM International, West Conshohocken, PA, 2012. doi: 10.1520/g0057-06r12

29. Tang, L., and Nilsson, L. O., “Rapid Determination of The Chloride Diffusivity in Concrete by Applying an Electric Field,” ACI Materials Journal, V. 89, No. 1, Jan.-Feb. 1993, pp. 40-53. doi: 10.14359/1244

30. NT Build 492, “Nordtest, Concrete, Mortar and Cement-based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments,” 1999.

31. Yio, M. H. N.; Wong, H. S.; and Buenfeld, N. R., “3-D Pore Structure and Mass Transport Properties of Blended Cementitious Materials,” Cement and Concrete Research, V. 117, 2019, pp. 23-37. doi: 10.1016/j.cemconres.2018.12.007

32. Comité Euro-International du Betón (CEB), “Assessment of Concrete Structures and Design Procedures—CEB 162,” Paris, France, 1983.

33. Cherem da Cunha, A. L.; Gonçalves, J. P.; Büchler, P. M.; and Dweck, J., “Effect of Metakaolin Pozzolanic Activity in the Early Stages of Cement Type II Paste and Mortar Hydration,” Journal of Thermal Analysis and Calorimetry, V. 92, No. 1, 2008, pp. 115-119. doi: 10.1007/s10973-007-8749-5

34. Abdelli, K.; Tahlaiti, M.; Belarbi, R.; and Oudjit, M. N., “Influence of the Origin of Metakaolin on Pozzolanic Reactivity of Mortars,” Energy Procedia, V. 139, 2017, pp. 230-235. doi: 10.1016/j.egypro.2017.11.201

35. Tironi, A.; Trezza, M. A.; Irassar, E. F.; and Scian, A. N., “Thermal Treatment of Kaolin: Effect on the Pozzolanic Activity,” Procedia Materials Science., V. 1, 2012, pp. 343-350. doi: 10.1016/j.mspro.2012.06.046

36. Nilsson, L.-O.; Ngo, M. H.; and Gjørv, O. E., “High-Performance Repair Materials for Concrete Structures in The Port of Gothenburg,” Proceedings of 2nd International Conference on Concrete Under Severe Conditions: Environment and Loading, 1998, pp. 1193-1198.

37. Honorio, T.; Carasek, H.; and Cascudo, O. “Electrical Properties of Cement-Based Materials: Multiscale Modeling and Quantification of the Variability,” Construction and Building Materials, V. 245, 2020, pp. 1-16. doi: 10.1016/j.conbuildmat.2020.118461

38. Sengul, O., “Use of Electrical Resistivity as an Indicator for Durability,” Construction and Building Materials, V. 73, 2014, pp. 434-441. doi: 10.1016/j.conbuildmat.2014.09.077


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer