Title:
Estimation of Electrical Resistivity of Concrete with Blast‑Furnace Slag
Author(s):
S. E. S. Mendes, R. L. N. Oliveira, C. Cremonez, E. Pereira, E. Pereira, P. O. Trentin, and R. A. Medeiros-Junior
Publication:
Materials Journal
Volume:
118
Issue:
4
Appears on pages(s):
27-37
Keywords:
durability; electrical resistivity; models; nondestructive testing; porosimetry
DOI:
10.14359/51732597
Date:
7/1/2021
Abstract:
Blast-furnace slag (BFS) has been increasingly used in cement production and has shown great influence on the electrical resistivity of concrete. The objective of this paper is to compare the theoretical values of electrical resistivity obtained through a mathematical model with experimental values for concrete with BFS. Reference concrete mixtures with ordinary portland cement were also studied. Results indicate higher electrical resistivity and smaller porosity for concretes with CEM III/A. The electrical resistivity of the CEM III/A concrete does not have a well-defined correlation with the water-binder ratio (w/b) or with the compressive strength, unlike CEM I concretes. The correlation between calculated and experimental resistivity requires a correction factor for the CEM III/A concretes. In this study, the correction factor was obtained empirically by reducing the theoretical tortuosity of concrete by 15%. Therefore, the model should be used in cements with BFS with the application of a correction factor.
Related References:
1. Nguyen, A. Q.; Klysz, G.; Deby, F.; and Balayssac, J. P., “Assessment of the Electrochemical State of Steel Reinforcement in Water Saturated Concrete by Resistivity Measurement,” Construction and Building Materials, V. 171, May 2018, pp. 455-466. doi: 10.1016/j.conbuildmat.2018.01.155
2. Balestra, C. E. T.; Nakano, A. Y.; Savaris, G.; and Medeiros-Junior, R. A., “Reinforcement Corrosion Risk of Marine Concrete Structures Evaluated through Electrical Resistivity: Proposal of Parameters Based on Field Structures,” Ocean Engineering, V. 187, Sept. 2019, p. 106167. doi: 10.1016/j.oceaneng.2019.106167
3. Medeiros-Junior, R. A.; Gans, P. S.; Pereira, E.; and Pereira, E., “Electrical Resistivity of Concrete Exposed to Chlorides and Sulfates,” ACI Materials Journal, V. 116, No. 3, May 2019, pp. 119-130. doi: 10.14359/51714464
4. Azarsa, P., and Gupta, R., “Electrical Resistivity of Concrete for Durability Evaluation: A Review,” Advances in Materials Science and Engineering, V. 2017, May 2017, pp. 1-31. doi: 10.1155/2017/8453095
5. Mazer, W.; Lima, M. G.; and Medeiros-Junior, R. A., “Fuzzy Logic for Estimating Chloride Diffusion in Concrete,” Proceedings of the Institution of Civil Engineers – Structures and Buildings, V. 171, No. 7, 2018, pp. 542-551. doi: 10.1680/jstbu.16.00153
6. Souza, D. J.; Yamashita, L. Y.; Dranka, F.; Medeiros, M. H.; and Medeiros-Junior, R. A., “Repair Mortars Incorporating Multiwalled Carbon Nanotubes: Shrinkage and Sodium Sulfate Attack,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 12, 2017, p. 04017246. doi: https://doi.org//10.1061/(ASCE)MT.1943-5533.0002105
7. Balestra, C. E. T.; Reichert, T. A.; Pansera, W. A.; and Savaris, G., “Evaluation of Chloride Ion Penetration through Concrete Surface Electrical Resistivity of Field Naturally Degraded Structures Present in Marine Environment,” Construction and Building Materials, V. 230, Jan. 2020, p. 116979. doi: 10.1016/j.conbuildmat.2019.116979
8. Layssi, H.; Ghods, P.; Alizadeh, A. R.; and Salehi, M., “Electrical Resistivity of Concrete,” Concrete International, V. 37, No. 5, May 2015, pp. 41-46.
9. Medeiros-Junior, R. A., and Lima, M. G., “Electrical Resistivity of Unsaturated Concrete Using Different Types of Cement,” Construction and Building Materials, V. 107, Mar. 2016, pp. 11-16. doi: 10.1016/j.conbuildmat.2015.12.168
10. Hornbostel, K.; Larsen, C. K.; and Geiker, M. R., “Relationship between Concrete Resistivity and Corrosion Rate—A Literature Review,” Cement and Concrete Composites, V. 39, May 2013, pp. 60-72. doi: 10.1016/j.cemconcomp.2013.03.019
11. Lübeck, A.; Gastaldini, A. L. G.; Barin, D. S.; and Siqueira, H. C., “Compressive Strength and Electrical Properties of Concrete with White Portland Cement and Blast-Furnace Slag,” Cement and Concrete Composites, V. 34, No. 3, 2012, pp. 392-399. doi: 10.1016/j.cemconcomp.2011.11.017
12. Medeiros-Junior, R. A., “Impact of Climate Change on the Service Life of Concrete Structures,” Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures, F. Pacheco-Torgal, R. E. Melchers, X. Shi, N. De Belie, K. Van Tittelboom, and A. Sáez, eds., Woodhead Publishing, Cambridge, UK, 2018, pp. 43-68. doi: 10.1016/B978-0-08-102181-1.00003-4
13. Polder, R. B., “Test Methods for on Site Measurement of Resistivity of Concrete—A RILEM TC-154 Technical Recommendation,” Construction and Building Materials, V. 15, No. 2-3, 2001, pp. 125-131. doi: 10.1016/S0950-0618(00)00061-1
14. Cruz, J. M.; Fita, I. C.; Soriano, L.; Payá, J.; and Borrachero, M. V., “The Use of Electrical Impedance Spectroscopy for Monitoring the Hydration Products of Portland Cement Mortars with High Percentage of Pozzolans,” Cement and Concrete Research, V. 50, Aug. 2013, pp. 51-61. doi: 10.1016/j.cemconres.2013.03.019
15. Ghoddousi, P., and Saadabadi, L. A., “Study on Hydration Products by Electrical Resistivity for Self-Compacting Concrete with Silica Fume and Metakaolin,” Construction and Building Materials, V. 154, Nov. 2017, pp. 219-228. doi: 10.1016/j.conbuildmat.2017.07.178
16. Millard, S. G., “Reinforced Concrete Resistivity Measurement Techniques,” Proceedings - Institution of Civil Engineers, V. 91, No. 1, 1991, pp. 71-88. doi: 10.1680/iicep.1991.13583
17. Elkey, W., and Sellevold, E. J., Electrical Resistivity of Concrete, Norwegian Road Research Laboratory, Oslo, Norway, 1995.
18. Andrade, C., and D’Andrea, R., “Electrical Resistivity as Microstructural Parameter for the Modelling of Service Life of Reinforced Concrete Structures,” Proceedings, Second International Symposium on Service Life Design for Infrastructure, Delft, the Netherlands, 2010, pp. 379-388.
19. Hou, T. C.; Nguyen, V. K.; Su, Y. M.; Chen, Y. R.; and Chen, P. J., “Effects of Coarse Aggregates on the Electrical Resistivity of Portland Cement Concrete,” Construction and Building Materials, V. 133, Feb. 2017, pp. 397-408. doi: 10.1016/j.conbuildmat.2016.12.044
20. Ramezanianpour, A. A.; Pilvar, A.; Mahdikhani, M.; and Moodi, F., “Practical Evaluation of Relationship between Concrete Resistivity, Water Penetration, Rapid Chloride Penetration and Compressive Strength,” Construction and Building Materials, V. 25, No. 5, 2011, pp. 2472-2479. doi: 10.1016/j.conbuildmat.2010.11.069
21. D’Andrea, R., “Prediction of the Durability of Reinforced Concrete from Corrosion Indicators: Application of Electrical Resistivity (in Spanish: Predicción de la durabilidad del hormigón armado a partir de indicadores de corrosión: aplicación de la resistividad eléctrica),” thesis, Polytechnic University of Madrid, Madrid, Spain, 2010.
22. Mendes, S. E.; Oliveira, R. L.; Cremonez, C.; Pereira, E.; Pereira, E.; and Medeiros-Junior, R. A., “Electrical Resistivity as a Durability Parameter for Concrete Design: Experimental Data versus Estimation by Mathematical Model,” Construction and Building Materials, V. 192, Dec. 2018, pp. 610-620. doi: 10.1016/j.conbuildmat.2018.10.145
23. Archie, G. E., “The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics,” Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, V. 146, No. 1, 1942, pp. 54-62. doi: 10.2118/942054-G
24. Buenfeld, N. R.; Newman, J. B.; and Page, C. L., “The Resistivity of Mortars Immersed in Sea-Water,” Cement and Concrete Research, V. 16, No. 4, 1986, pp. 511-524. doi: 10.1016/0008-8846(86)90089-X
25. Goñi, S., and Andrade, C., “Synthetic Concrete Pore Solution Chemistry and Rebar Corrosion Rate in the Presence of Chlorides,” Cement and Concrete Research, V. 20, No. 4, 1990, pp. 525-539. doi: 10.1016/0008-8846(90)90097-H
26. Powers, T. C.; Copeland, L. E.; and Mann, H. M., “Capillary Continuity or Discontinuity in Cement Pastes,” PCA Research and Development Labs, V. 2, No. 110, 1959, pp. 38-48.
27. Mills, R. H., “Factors Influencing Cessation of Hydration in Water Cured Cement Pastes (Highway Research Board Special Report Number 90),” Proceedings, Symposium on the Structure of Portland Cement Paste and Concrete, Highway Research Board, Washington, DC, 1966, pp. 406-424.
28. Andrade, C., “Calculation of Initiation and Propagation Periods of Service Life of Reinforcements by Using the Electrical Resistivity (Pro048),” Proceedings, First International RILEM Symposium on Advances in Concrete through Science and Engineering, Northwestern University, Evanston, IL, 2004.
29. Gonzalez, J. A., and Andrade, C., “Effect of Carbonation, Chlorides and Relative Ambient Humidity on the Corrosion of Galvanized Rebars Embedded in Concrete,” British Corrosion Journal, V. 17, No. 1, 1982, pp. 21-28. doi: 10.1179/000705982798274589
30. Medeiros-Junior, R. A., and Bem, D. H., “Study of the Environment Factor from Fick’s and Electrical Resistivity Models by Simulation of Chloride Diffusivity Prediction,” Advances in Structural Engineering, V. 23, No. 10, 2020, pp. 2097-2109. doi: 10.1177/1369433220906932
31. Tibbetts, C. M.; Paris, J. M.; Ferraro, C. C.; Riding, K. A.; and Townsend, T. G., “Relating Water Permeability to Electrical Resistivity and Chloride Penetrability of Concrete Containing Different Supplementary Cementitious Materials,” Cement and Concrete Composites, V. 107, Mar. 2020, p. 103491. doi: 10.1016/j.cemconcomp.2019.103491
32. Shubbar, A. A.; Jafer, H.; Dulaimi, A.; Hashim, K.; Atherton, W.; and Sadique, M., “The Development of a Low Carbon Binder Produced from the Ternary Blending of Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash: An Experimental and Statistical Approach,” Construction and Building Materials, V. 187, Oct. 2018, pp. 1051-1060. doi: 10.1016/j.conbuildmat.2018.08.021
33. He, X.; Ma, M.; Su, Y.; Lan, M.; Zheng, Z.; Wang, T.; Strnadel, B.; and Zeng, S., “The Effect of Ultrahigh Volume Ultrafine Blast Furnace Slag on the Properties of Cement Pastes,” Construction and Building Materials, V. 189, Nov. 2018, pp. 438-447. doi: 10.1016/j.conbuildmat.2018.09.004
34. Rovnaník, P.; Kusák, I.; Bayer, P.; Schmid, P.; and Fiala, L., “Comparison of Electrical and Self-Sensing Properties of Portland Cement and Alkali-Activated Slag Mortars,” Cement and Concrete Research, V. 118, Apr. 2019, pp. 84-91. doi: 10.1016/j.cemconres.2019.02.009
35. European Committee for Standardization, “Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements (BS EN 197-1: 2011),” CEN, Brussels, Belgium, 2011.
36. Lencioni, J. W., and Medeiros-Junior, R. A., “Analysis of Different Parameters in the Electrical Resistivity Test of Concrete,” International Journal of Civil Engineering, V. 19, Aug. 2020, pp. 1-12. doi: 10.1007/s40999-020-00559-8
37. UNE 83988-2:2014, “Concrete Durability. Test Methods. Determination of the Electrical Resistivity. Part 2: Four Points or Wenner Method (in Spanish: Durabilidad del hormigón. Métodos de ensayo. Determinación de la resistividad eléctrica. Parte 2: Método de las cuatro puntas o de Wenner),” Spanish Association for Standardization and Certification, Madrid, Spain, 2014.
38. ABNT NBR 5739:2007, “Concrete—Compression Tests of Cylindrical Specimens (in Portuguese: Concreto—Ensaio de compressão de corpos-de-prova cilíndricos),” Brazilian Association of Technical Standards, Rio de Janeiro, Brazil, 2007.
39. Song, H. W., and Saraswathy, V., “Corrosion Monitoring of Reinforced Concrete Structures—A Review,” International Journal of Electrochemical Science, V. 2, Jan. 2007, pp. 1-28.
40. Dinakar, P.; Babu, K. G.; and Santhanam, M., “Corrosion Behaviour of Blended Cements in Low and Medium Strength Concretes,” Cement and Concrete Composites, V. 29, No. 2, 2007, pp. 136-145. doi: 10.1016/j.cemconcomp.2006.10.005
41. Hunkeler, F., “The Resistivity of Pore Water Solution—A Decisive Parameter of Rebar Corrosion and Repair Methods,” Construction and Building Materials, V. 10, No. 5, 1996, pp. 381-389. doi: 10.1016/0950-0618(95)00029-1