Title:
Implementation of Creep-Damage Model for Concrete Fracture in MOOSE
Author(s):
N. Saklani, B. M. Khaled, G. Banwat, B. Spencer, A. Giorla, G. Sant, S. Rajan, and N. Neithalath
Publication:
Materials Journal
Volume:
117
Issue:
6
Appears on pages(s):
135-149
Keywords:
creep; creep-damage parameter; finite element simulation; isotropic damage; multiphysics object-oriented simulation environment (MOOSE)
DOI:
10.14359/51729312
Date:
11/1/2020
Abstract:
Numerical implementation of an isotropic creep-damage model for concrete in multiphysics object-oriented simulation environment (MOOSE) finite element framework is presented in this paper. The constitutive model considers the combined effect of instantaneous and delayed strains on damage propagation. The implementation considers creep using generalized Maxwell or Kelvin-Voigt models. Using strain splitting assumptions, the total mechanical strains are split into elastic and creep components. Damage is considered to evolve as a function of the elastic and creep strains. This work considers damage as a function of fracture energy using the characteristic length of each finite element. This approach preserves the energy release rate of each element and avoids vanishing energy
dissipation as the mesh is refined. A creep-damage parameter is used to quantify the effect of creep strain on damage. The model is tested against published results on notched three-point bending specimens involving non-linear creep and predicts that about a third of the creep strain contributes towards damage for the experiments simulated. Results show that the proposed framework has predictive capabilities, and the model can be extended for more complex systems.
Related References:
1. Mazzotti, C., and Savoia, M., “An Isotropic Damage Model for Non Linear Creep Behavior of Concrete in Compression,” 4th Int. Conf. on Fracture Mechanics of Concrete and Concrete Structures, Cachan, France, 2001, 8 pp.
2. Mazzotti, C., and Savoia, M., “Nonlinear Creep Damage Model for Concrete under Uniaxial Compression,” Journal of Engineering Mechanics, ASCE, V. 129, No. 9, 2003, pp. 1065-1075. doi: 10.1061/(ASCE)0733-9399(2003)129:9(1065)
3. Pijaudier-Cabot, G.; Omar, M.; Loukili, A; and Le Pape, Y., “Creep-Damage Interaction in Concrete Structures,” 11th International Conference on Fracture. 2005. p. 6.
4. Bažant, Z. P., and Gettu, R., “Rate Effects And Load Relaxation In Static Fracture Of Concrete,” ACI Materials Journal, V. 89, No. 5, Sept.-Oct. 1992, pp. 457-468.
5. Giorla, A. B.; Yann, L. P.; and Dunant, C. F., “Computing Creep-Damage Interactions In Irradiated Concrete,” Journal of Nanomechanics & Micromechanics, ASCE, V. 7, No. 2, 2017, p. 04017001. doi: 10.1061/(ASCE)NM.2153-5477.0000118
6. Bažant, Z. P., and Baweja, S., “Creep and Shrinkage Prediction Model For Analysis And Design Of Concrete Structures: Model B3,” The Adam Neville Symposium: Creep and Shrinkage-Structural Design Effects, SP-194, American Concrete Institute, Farmington Hills, MI, 2000, pp. 1-84.
7. Altoubat, S. A., and Lange, D. A., “Creep, Shrinkage, And Cracking Of Restrained Concrete At Early Age,” ACI Materials Journal, V. 98, No. 4, July-Aug. 2001, pp. 323-331.
8. Challamel, N.; Lanos, C.; and Casandjian, C., “Creep Damage Modelling For Quasi-Brittle Materials,” European Journal of Mechanics. A, Solids, V. 24, No. 4, 2005, pp. 593-613. doi: 10.1016/j.euromechsol.2005.05.003
9. Rossi, P.; Tailhan, J.-L.; Le Maou, F.; Gaillet, L.; and Martin, E., “Basic Creep Behavior Of Concretes Investigation Of The Physical Mechanisms By Using Acoustic Emission,” Cement and Concrete Research, V. 42, No. 1, 2012, pp. 61-73. doi: 10.1016/j.cemconres.2011.07.011
10. Rossi, P.; Godart, N.; Robert, J. L.; Gervais, J. P.; and Bruhat, D., “Investigation Of The Basic Creep Of Concrete By Acoustic Emission,” Materials and Structures, V. 27, No. 9, 1994, pp. 510-514. doi: 10.1007/BF02473211
11. Tamtsia, B. T., and Beaudoin, J. J., “Basic Creep Of Hardened Cement Paste A Re-Examination Of The Role Of Water,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1465-1475. doi: 10.1016/S0008-8846(00)00279-9
12. Hannant, D. J., “The Mechanism Of Creep In Concrete,” Materiales de Construcción, V. 1, No. 5, 1968, pp. 403-410.
13. Bažant, Z. P. “Mathematical Modeling of Creep and Shrinkage of Concrete,” John Wiley & Sons, Inc., New York, N.Y.
14. Neville, A. M., “Theories of Creep in Concrete,” ACI Journal Proceedings, V. 52, No. 9, 1955, pp. 47-60.
15. Neville, A. M., Creep Of Concrete: Plain, Reinforced, and Prestressed, 1971.
16. Bažant, Z. P., and Xiang, Y., “Crack Growth and Lifetime of Concrete under Long Time Loading,” Journal of Engineering Mechanics, ASCE, V. 123, No. 4, 1997, pp. 350-358. doi: 10.1061/(ASCE)0733-9399(1997)123:4(350)
17. Bažant, Z. P., and Li, Y.-N., “Cohesive Crack with Rate-Dependent Opening and Viscoelasticity: I. Mathematical Model and Scaling,” International Journal of Fracture, V. 86, No. 3, 1997, pp. 247-265. doi: 10.1023/A:1007486221395
18. Di Luzio, G., “Numerical Model for Time-Dependent Fracturing of Concrete,” Journal of Engineering Mechanics, ASCE, V. 135, No. 7, 2009, pp. 632-640. doi: 10.1061/(ASCE)0733-9399(2009)135:7(632)
19. Rosa, A. L.; Yu, R. C.; Ruiz, G.; Saucedo, L.; and Sousa, J. L. A. O., “A Loading Rate Dependent Cohesive Model for Concrete Fracture,” Engineering Fracture Mechanics, V. 82, 2012, pp. 195-208. doi: 10.1016/j.engfracmech.2011.12.013
20. Reviron, N., and Benboudjema, F., “Coupling Between Creep and Cracking In Tension,” Framcos 6, Catania, 2007, pp. 8.
21. Bažant, Z. P., and Prasannan, S., “Solidification Theory for Concrete Creep. I: Formulation,” Journal of Engineering Mechanics, ASCE, V. 115, No. 8, 1989, pp. 1691-1703. doi: 10.1061/(ASCE)0733-9399(1989)115:8(1691)
22. Bažant, Z. P., and Wu, S. T., “Rate-Type Creep Law of Aging Concrete Based On Maxwell Chain,” Matériaux et Constructions, V. 7, No. 1, 1974, pp. 45-60. doi: 10.1007/BF02482679
23. Bažant, Z. P., and Wu, S. T., “Dirichlet Series Creep Function For Aging Concrete,” Journal of Engineering Mechanics, ASCE, V. 99, 1973, pp. 367-387.
24. Kurumatani, M.; Terada, K.; Kato, J.; Kyoya, T.; and Kashiyama, K., “An Isotropic Damage Model Based on Fracture Mechanics for Concrete,” Engineering Fracture Mechanics, V. 155, 2016, pp. 49-66. doi: 10.1016/j.engfracmech.2016.01.020
25. Bažant, Z. P., and Lin, F.-B., “Nonlocal Smeared Cracking Model for Concrete Fracture,” Journal of Structural Engineering, ASCE, V. 114, No. 11, 1988, pp. 2493-2510. doi: 10.1061/(ASCE)0733-9445(1988)114:11(2493)
26. Bažant, Z. P., and Oh, B. H., “Crack Band Theory for Fracture of Concrete,” Matériaux et Constructions, V. 16, No. 3, 1983, pp. 155-177. doi: 10.1007/BF02486267
27. Hillerborg, A.; Modéer, M.; and Petersson, P.-E., “Analysis of Crack Formation And Crack Growth In Concrete By Means Of Fracture Mechanics And Finite Elements,” Cement and Concrete Research, V. 6, No. 6, 1976, pp. 773-781. doi: 10.1016/0008-8846(76)90007-7
28. Bažant, Z. P., and Planas, J., “Fracture and Size Effect in Concrete and Other Quasibrittle Materials,” CRC Press, Boca Raton, FL, 1997, 648 pp.
29. Pijaudier-Cabot, G.; Bažant, Z. P.; and Tabbara, M., “Comparison of Various Models For Strain Softening,” Engineering Computations, V. 5, No. 2, 1988, pp. 141-150. doi: 10.1108/eb023732
30. de Vree, J. H. P.; Brekelmans, W. A. M.; and van Gils, M. A. J., “Comparison of Nonlocal Approaches In Continuum Damage Mechanics,” Computers & Structures, V. 55, No. 4, 1995, pp. 581-588. doi: 10.1016/0045-7949(94)00501-S
31. Hoover, C. G., and Bažant, Z. P., “Cohesive Crack, Size Effect, Crack Band and Work-Of-Fracture Models Compared To Comprehensive Concrete Fracture Tests,” International Journal of Fracture, V. 187, No. 1, 2014, pp. 133-143. doi: 10.1007/s10704-013-9926-0
32. Pijaudier‐Cabot, G., and Bažant, Z. P., “Nonlocal Damage Theory,” Journal of Engineering Mechanics, ASCE, V. 113, No. 10, 1987, pp. 1512-1533. doi: 10.1061/(ASCE)0733-9399(1987)113:10(1512)
33. RILEM Technical Committee TC-242-MDC, “Rilem Draft Recommendation: Tc-242-Mdc Multi-Decade Creep and Shrinkage of Concrete: Material Model and Structural Analysis*: Model B4 For Creep, Drying Shrinkage and Autogenous Shrinkage of Normal and High-Strength Concretes with Multi-Decade Applicability,” Materials and Structures, V. 48, No. 4, 2015, pp. 753-770. doi: 10.1617/s11527-014-0485-2
34. Giorla, A. B. “Implementation of Concrete Creep Model in Grizzly,” Technical Report No Ornl/Tm-2017/729,” 2017.
35. Saklani, N.; Wei, Z.; Giorla, A.; Spencer, B.; Rajan, S.; Sant, G.; and Neithalath, N., “Finite Element Simulation of Restrained Shrinkage Cracking of Cementitious Materials: Considering Moisture Diffusion, Aging Viscoelasticity, Aleatory Uncertainty, and The Effects of Soft/Stiff Inclusions,” Finite Elements in Analysis and Design, V. 173, 2020, p. 103390. doi: 10.1016/j.finel.2020.103390
36. Pijaudier-Cabot, G., and Mazars, J., “Damage Models for Concrete.” Lemaitre, J., ed., Handbook of Materials Behavior Models, V. 2, 2001. pp. 500–12.
37. Fichant, S.; La Borderie, C.; and Pijaudier-Cabot, G., “Isotropic and Anisotropic Descriptions of Damage in Concrete Structures,” Mechanics of Cohesive-Frictional Materials, V. 4, No. 4, 1999, pp. 339-359. doi: 10.1002/(SICI)1099-1484(199907)4:43.0.CO;2-J
38. Khaled, B.; Shyamsunder, L.; Hoffarth, C.; Rajan, S. D.; Goldberg, R. K.; Carney, K. S.; DuBois, P.; and Blankenhorn, G., “Damage Characterization of Composites to Support an Orthotropic Plasticity Material Model,” Journal of Composite Materials, V. 53, No. 7, 2019, pp. 941-967. doi: 10.1177/0021998318793506
39. Mazars, J., “A Description of Micro- and Macroscale Damage of Concrete Structures,” Engineering Fracture Mechanics, V. 25, No. 5, 1986, pp. 729-737. doi: 10.1016/0013-7944(86)90036-6
40. Mazars, J.; Hamon, F.; and Grange, S., “A New 3d Damage Model for Concrete under Monotonic, Cyclic and Dynamic Loadings,” Materials and Structures, V. 48, No. 11, 2015, pp. 3779-3793. doi: 10.1617/s11527-014-0439-8
41. Gopalaratnam, V. S., and Shah, S. P., “Softening Response of Plain Concrete in Direct Tension,” ACI Journal Proceedings, V. 82, No. 3, May-June 1985, pp. 310-323.
42. Permann, C. J.; Gaston, D. R.; Andrs, D. et al., “MOOSE: Enabling Massively Parallel Multiphysics Simulation,” SoftwareX. 11 (2020) 100430, 10.1016/j.softx.2020.100430
43. Huang, H., and Spencer, B., “Grizzly Model of Fully Coupled Heat Transfer, Moisture Diffusion, Alkali-Silica Reaction and Fracturing Processes in Concrete,” Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Berkeley, CA, 2016.
44. Kirk, B. S.; Peterson, J. W.; Stogner, R. H.; and Carey, G. F., “A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations,” Engineering with Computers, V. 22, No. 3–4, 2006, pp. 237-254. doi: 10.1007/s00366-006-0049-3
45. Slaughter, A. E.; Peterson, J. W.; Gaston, D. R.; Permann, C. J.; Andrš, D.; and Miller, J. M., “Continuous Integration for Concurrent MOOSE Framework and Application Development on GitHub,” Journal of Open Research Software, V. 3, No. 1, 2015, p. e14.
46. https://github.com/idaholab/moose, Idaho National Laboratory, 2019.
47. “Parallel Multiphysics Finite Element Framework.” Available at: https://mooseframework.org/. Accessed April 24, 2019.
48. Omar, M.; Loukili, A.; Pijaudier-Cabot, G.; and Le Pape, Y., “Creep Damage Coupled Effects: Experimental Investigation on Bending Beams with Various Sizes,” Journal of Materials in Civil Engineering, ASCE, V. 21, No. 2, 2009, pp. 65-72. doi: 10.1061/(ASCE)0899-1561(2009)21:2(65)
49. Bažant, Z. P. “Creep and Damage in Concrete,” Materials Science of Concrete IV, 1995, pp. 355-389.
50. Hordijk, D. A., and Reinhardt, H. W., “Fracture of Concrete in Uniaxial Tensile Experiments as Influenced by Curing Conditions,” Engineering Fracture Mechanics, V. 35, No. 4, 1990, pp. 819-826. doi: 10.1016/0013-7944(90)90166-E
51. Bažant, Z. P., “Size Effect on Structural Strength: a Review,” Archive of Applied Mechanics, V. 69, No. 9-10, 1999, pp. 703-725. doi: 10.1007/s004190050252