Title:
Non-Equilibrium Thermodynamic Modeling Framework for Ordinary Portland Cement/Supplementary Cementitious Material Systems
Author(s):
Deborah Glosser, O. Burkan Isgor, and W. Jason Weiss
Publication:
Materials Journal
Volume:
117
Issue:
6
Appears on pages(s):
111-123
Keywords:
amorphous silica; dissolution kinetics; hydration; ordinary portland cement; supplementary cementitious materials; thermodynamic modeling
DOI:
10.14359/51728127
Date:
11/1/2020
Abstract:
Thermodynamic modeling is an established tool that can use binder composition to predict reaction products and pore solution chemistry in hydrating cementitious systems. Thermodynamic simulations rely on the assumption that all reactions reach equilibrium; however, reacting systems are inherently dynamic. An
established kinetic model exists and is used in conjunction with thermodynamic Gibbs free energy minimization software (GEMS) to provide quasi-equilibrium inputs for modeling hydrating cement clinkers. However, no similar model has existed to explicitly model the non-equilibrium reactions of cement with supplementary materials. Here, a framework to compute kinetic inputs for use in time-dependent thermodynamic calculations of cement/amorphous silica systems is demonstrated. Reaction products, pore solution composition, and pH are modeled and compared with experimental measurements for multiple ordinary portland cement (OPC)/SiO2 binders at varying replacement levels and water contents. The results show that when time-dependent clinker and SiO2 reactions are modeled together, the hydraulic reactions and the pozzolanicity of SiO2 can be accurately predicted.
Related References:
1. Lothenbach, B., and Winnefeld, F., “Thermodynamic Modelling of the Hydration of Portland Cement,” Cement and Concrete Research, V. 36, No. 2, 2006, pp. 209-226. doi: 10.1016/j.cemconres.2005.03.001
2. Jafari Azad, V.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “Interpreting the Pore Structure of Hydrating Cement Phases through a Synergistic Use of the Powers-Brownyard Model, Hydration Kinetics, and Thermodynamic Calculations,” Advances in Civil Engineering Materials, V. 6, No. 1, 2017, pp. 201-238. doi: 10.1520/ACEM20160038
3. Parrot, L., and Killoh, D., “Prediction of Cement Hydration,” Proceedings, Thirty Fifth British Ceramic Society Proceedings on the Chemistry and Chemically-Related Properties of Cement, Stoke-on-Trent, UK, 1984, pp. 41-53.
4. Winnefeld, F., and Lothenbach, B., “Hydration of Calcium Sulfoaluminate Cements – Experimental Findings and Thermodynamic Modelling,” Cement and Concrete Research, V. 40, No. 8, 2010, pp. 1239-1247. doi: 10.1016/j.cemconres.2009.08.014
5. Gruskovnjak, A.; Lothenbach, B.; Holzer, L.; Figi, R.; and Winnefeld, F., “Hydration of Alkali-Activated Slag: Comparison with Ordinary Portland Cement,” Advances in Cement Research, V. 18, No. 3, 2006, pp. 119-128. doi: 10.1680/adcr.2006.18.3.119
6. Glosser, D.; Jafari Azad, V.; Suraneni, P.; Isgor, B.; and Weiss, W. J., “Extension of Powers-Brownyard Model to Pastes Containing Supplementary Cementitious,” ACI Materials Journal, V. 116, No. 5, Sept. 2019, pp. 205-216. doi: 10.14359/51714466
7. Princigallo, A.; Lura, P.; van Breugel, K.; and Levita, G., “Early Development of Properties in a Cement Paste: A Numerical and Experimental Study,” Cement and Concrete Research, V. 33, No. 7, 2003, pp. 1013-1020. doi: 10.1016/S0008-8846(03)00002-4
8. Voter, A. F.; Montalenti, F.; and Germann, T. C., “Extending the Time Scale in Atomistic Simulation of Materials,” Annual Review of Materials Research, V. 32, No. 1, 2002, pp. 321-346. doi: 10.1146/annurev.matsci.32.112601.141541
9. Kondo, R., and Kodama, M., “On the Hydration Kinetics of Cement,” Semento Gijutsu Nenpo, V. 21, 1967, pp. 77-82.
10. Jennings, H. M., “A Model for the Microstructure of Calcium Silicate Hydrate in Cement Paste,” Cement and Concrete Research, V. 30, No. 1, 2000, pp. 101-116. doi: 10.1016/S0008-8846(99)00209-4
11. Suraneni, P.; Fu, T.; Jafari-Azad, V.; Isgor, O. B.; and Weiss, W. J., “Pozzolanicity of Finely Ground Lightweight Aggregates,” Cement and Concrete Composites, V. 88, Apr. 2018, pp. 115-120. doi: 10.1016/j.cemconcomp.2018.01.005
12. Lothenbach, B., and Wieland, E., “A Thermodynamic Approach to the Hydration of Sulphate-Resisting Portland Cement,” Waste Management (New York, N.Y.), V. 26, No. 7, 2006, pp. 706-719. doi: 10.1016/j.wasman.2006.01.023
13. Lothenbach, B.; Le Saout, G.; Gallucci, E.; and Scrivener, K., “Influence of Limestone on the Hydration of Portland Cements,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 848-860. doi: 10.1016/j.cemconres.2008.01.002
14. Lothenbach, B.; Matschei, T.; Möschner, G.; and Glasser, F. P., “Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement,” Cement and Concrete Research, V. 38, No. 1, 2008, pp. 1-18. doi: 10.1016/j.cemconres.2007.08.017
15. Jafari Azad, V., and Isgor, O. B., “Modeling Chloride Ingress in Concrete with Thermodynamically Calculated Chemical Binding,” International Journal of Advances in Engineering Sciences and Applied Mathematics, V. 9, No. 2, 2017, pp. 97-108. doi: 10.1007/s12572-017-0189-2
16. Snellings, R., and Scrivener, K. L., “Rapid Screening Tests for Supplementary Cementitious Materials: Past and Future,” Materials and Structures, V. 49, No. 8, 2016, pp. 3265-3279. doi: 10.1617/s11527-015-0718-z
17. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001
18. Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J. H.; and Thomas, M. D. A., “Alkali-Silica Reaction: Current Understanding of the Reaction Mechanisms and the Knowledge Gaps,” Cement and Concrete Research, V. 76, Oct, 2015, pp. 130-146. doi: 10.1016/j.cemconres.2015.05.024
19. Lothenbach, B., and Gruskovnjak, A., “Hydration of Alkali-Activated Slag: Thermodynamic Modelling,” Advances in Cement Research, V. 19, No. 2, 2007, pp. 81-92. doi: 10.1680/adcr.2007.19.2.81
20. Whatley, S. N.; Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, J., “Mitigation of Calcium Oxychloride Formation in Cement Pastes Using Undensified Silica Fume,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 10, 2017, p. 04017198. doi: 10.1061/(ASCE)MT.1943-5533.0002052
21. Lothenbach, B.; La Saout, G.; Ben Haha, M.; Figi, R.; and Wieland, E., “Hydration of a Low-Alkali CEM III/B–SiO2 Cement (LAC),” Cement and Concrete Research, V. 42, No. 2, 2012, pp. 410-423. doi: 10.1016/j.cemconres.2011.11.008
22. Angst, U.; Elsener, B.; Larsen, C. K.; and Vennesland, O., “Critical Chloride Content in Reinforced Concrete – A Review,” Cement and Concrete Research, V. 39, No. 12, 2009, pp. 1122-1138. doi: 10.1016/j.cemconres.2009.08.006
23. Glosser, D.; Suraneni, P.; Isgor, O. B.; and Weiss, W. J., “Estimating Reaction Kinetics of Cementitious Pastes Containing Fly Ash,” Cement and Concrete Composites, V. 112, Sept. 2020, p. 103655 doi: 10.1016/j.cemconcomp.2020.103655
24. Durdziński, P. T.; Snellings, R.; Dunant, C. F.; Ben Haha, M.; and Scrivener, K. L., “Fly Ash as an Assemblage of Model Ca-Mg-Na-Aluminosilicate Glasses,” Cement and Concrete Research, V. 78, Dec. 2015, pp. 263-272. doi: 10.1016/j.cemconres.2015.08.005
25. Glosser, D.; Choudhary, A.; Isgor, O. B.; and Weiss, W. J., “Investigation of Reactivity of Fly Ash and Its Effect on Mixture Properties,” ACI Materials Journal, V. 116, No. 4, July 2019, pp. 193-200. doi: 10.14359/51716722
26. Lothenbach, B.; Rentsch, D.; and Wieland, E., “Hydration of a Silica Fume Blended Low-Alkali Shotcrete Cement,” Physics and Chemistry of the Earth, V. 70-71, 2014, pp. 3-16. doi: 10.1016/j.pce.2013.09.007
27. Thomas, J. J.; Biernacki, J.; Bullard, J. W.; Bishnoi, S.; Dolado, J. S.; Scherer, G. W.; and Luttge, A., “Modeling and Simulation of Cement Hydration Kinetics and Microstructure Development,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1257-1278. doi: 10.1016/j.cemconres.2010.10.004
28. Jafari Azad, V., and Isgor, O. B., “A Thermodynamic Perspective on Admixed Chloride Limits of Concrete Produced with SCMs,” Chloride Thresholds and Limits for New Construction, SP-308, American Concrete Institute, Farmington Hills, MI, 2016, pp. 1-16.
29. Li, S.; Roy, D.; and Kumar, A., “Quantatative Determination of Pozzolanas in Hydrated Systems of Cement or Ca(OH)2 with Fly Ash or Silica Fume,” Cement and Concrete Research, V. 15, No. 6, 1985, pp. 1079-1086. doi: 10.1016/0008-8846(85)90100-0
30. More, J., and Sorenson, D., “The Levenberg-Marquardt Algorithm: Implementation and Theory,” Argonne National Labs, Lemont, IL, 1977.
31. Kulik, D.; Berner, U.; and Curti, E., “Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code,” PSI Scientific Report, V. IV, B. Smith and B. Gschwend, eds., Nuclear Energy and Safety, Paul Scherrer Institute, Villigen, Switzerland, 2004, pp. 109-122.
32. Muller, A. C. A.; Scrivener, K.; Skibsted, J.; Gajewicz, A.; and McDonald, P. J., “Influence of Silica Fume on the Microstructure of Cement Pastes: New Insights from 1H NMR Relaxometry,” Cement and Concrete Research, V. 74, Aug, 2011, pp. 116-125.
33. De la Varga, I.; Castro, J.; Bentz, D.; Zunino, F.; and Weiss, W., “Evaluating the Hydration of High Volume Fly Ash Mixtures Using Chemically Inert Fillers,” Construction and Building Materials, V. 161, Feb. 2017, pp. 221-228.
34. Poulsen, S. L., and Jakobsen, H. J., “Methodologies for Measuring the Degree of Reaction in Portland Cement Blends with Supplementary Cementitious Materials by 29Si and 27Al MAS NMR Spectroscopy,” Aarhus Universitetsforlag, Aarhus, Denmark, 2009.
35. Kim, T., and Olek, J., “Effects of Sample Preparation and Interpretation of Thermogravimetric Curves on Calcium Hydroxide in Hydrated Pastes and Mortars,” Transportation Research Record: Journal of the Transportation Research Board, V. 2290, No. 1, 2012, pp. 10-18. doi: 10.3141/2290-02
36. Madani, H.; Bagheri, A.; and Parhizkar, T., “The Pozzolanic Reactivity of Monodispersed Nanosilica Hydrosols and Their Influence on the Hydration Characteristics of Portland Cement,” Cement and Concrete Research, V. 42, No. 12, 2012, pp. 1563-1570. doi: 10.1016/j.cemconres.2012.09.004
37. Suraneni, P., and Weiss, J., “Examining the Pozzolanicity of Supplementary Cementitious Materials Using Isothermal Calorimetry and Thermogravimetric Analysis,” Cement and Concrete Composites, V. 83, Oct. 2017, pp. 273-278. doi: 10.1016/j.cemconcomp.2017.07.009
38. Sun, G.; Brough, A.; and Young, F., “29Si NMR Study of the Hydration of Ca3SiO5 and β-Ca2SiO4 in the Presence of Silica Fume,” Journal of the American Ceramic Society, V. 82, No. 11, 1999, pp. 3225-3230. doi: 10.1111/j.1151-2916.1999.tb02228.x
39. Costoya, M., “Effect of Particle Size on the Hydration Kinetics and Microstructural Development of Tricalcium Silicate,” doctoral thesis, EPFL, Lausanne, Switzerland, 2008.
40. Suraneni, P.; Azad, V. J.; Isgor, O. B.; and Weiss, W. J., “Use of Fly Ash to Minimize Deicing Salt Damage in Concrete Pavements,” Transportation Research Record: Journal of the Transportation Research Board, V. 2629, No. 1, 2017, pp. 24-32. doi: 10.3141/2629-05
41. Suraneni, P.; Palacios, M.; and Flatt, R. J., “New Insights into the Hydration of Slag in Alkaline Media Using a Micro-Reactor Approach,” Cement and Concrete Research, V. 79, Jan. 2016, pp. 209-216. doi: 10.1016/j.cemconres.2015.09.015
42. Page, C. L., and Vennesland, Ø., “Pore Solution Composition and Chloride Binding Capacity of Silica-Fume Cement Pastes,” Materiales de Construcción, V. 16, No. 1, 1983, pp. 19-25. doi: 10.1007/BF02474863
43. Hong, S. Y., and Glasser, F. P., “Alkali Binding in Cement Pastes Part I. The C-S-H Phase,” Cement and Concrete Research, V. 29, No. 12, 1999, pp. 1893-1903. doi: 10.1016/S0008-8846(99)00187-8
44. Angst, U.; Elsener, B.; Larsen, C. K.; and Vennesland, O., “Chloride Induced Reinforcement Corrosion: Rate Limiting Step of Early Pitting Corrosion,” Electrochimica Acta, V. 56, No. 17, 2011, pp. 5877-5889. doi: 10.1016/j.electacta.2011.04.124
45. Zibara, H.; Hooton, R. D.; Thomas, M. D. A.; and Stanish, K., “Influence of the C/S and C/A Ratios of Hydration Products on the Chloride Ion Binding Capacity of Lime-SF and Lime-MK Mixtures,” Cement and Concrete Research, V. 38, No. 3, 2008, pp. 422-426. doi: 10.1016/j.cemconres.2007.08.024
46. Bickmore, B. R.; Nagy, A.; Gray, A. K.; and Brinkerhoff, A. R., “The Effect of Al(OH)4– on the Dissolution Rate of Quartz,” Geochimica et Cosmochimica Acta, V. 70, No. 2, 2006, pp. 290-305. doi: 10.1016/j.gca.2005.09.017