Title:
Computational Determination of Interface Fracture Properties for Concrete by Inverse Analysis
Author(s):
Xun Xi, Shangtong Yang, Xiaofei Hu, and Chun-Qing Li
Publication:
Materials Journal
Volume:
117
Issue:
6
Appears on pages(s):
43-53
Keywords:
cohesive crack model; fracture energy; fracture mechanics; heterogeneous concrete; interfacial transition zone (ITZ); inverse analysis; meso-scale
DOI:
10.14359/51728123
Date:
11/1/2020
Abstract:
The interfacial transition zone (ITZ) between cement mortar and aggregate significantly affects the cracking behavior of concrete. However, the fracture properties including the tensile strength and fracture energy of ITZ are hard to obtain directly from experiments. This paper develops an inverse numerical method for determining the fracture properties of ITZ based on a meso-scale fracture model and artificial neural network. Concrete is considered a multi-phase material, mainly consisting of aggregates, cement mortar, and ITZ. In the fracture model, cohesive elements are inserted in the mesh to achieve arbitrary cracking. The tensile strength and fracture energy of ITZ are the targeted variables to be inversely attained. A neural network is created and trained based on the simulated results, by which the optimized values of the targeted variables are obtained. Experimental results from RILEM tests are used to validate the numerical method.
Related References:
1. Bažant, Z. P., and Le, J. L., “Probabilistic Mechanics of Quasibrittle Structures: Strength, Lifetime, and Size Effect,” Cambridge: Cambridge University Press; 2017.
2. Li, K.; Zhang, D.; Li, Q.; and Fan, Z., “Durability for Concrete Structures in Marine Environments of HZM Project: Design, Assessment and Beyond,” Cement and Concrete Research, V. 115, 2019, pp. 545-558. doi: 10.1016/j.cemconres.2018.08.006
3. Li, Q.; Guan, J.; Wu, Z.; Wei, D.; and Zhou, S., “Fracture Behavior of Site-Casting Dam Concrete,” ACI Materials Journal, V. 112, No. 1, Jan.-Feb. 2015, pp. 11-20. doi: 10.14359/51687361
4. Salehi, M.; Ghods, P.; and Isgor, O. B., “Numerical Study on the Effect of Cracking on Surface Resistivity of Plain and Reinforced Concrete Elements,” Journal of Materials in Civil Engineering, ASCE, V. 27, No. 12, 2015, p. 04015053 doi: 10.1061/(ASCE)MT.1943-5533.0001328
5. Dong, W.; Wu, Z.; Zhou, X.; Wang, N.; and Kastiukas, G., “An Experimental Study on Crack Propagation at Rock-Concrete Interface Using Digital Image Correlation Technique,” Engineering Fracture Mechanics, V. 171, 2017, pp. 50-63. doi: 10.1016/j.engfracmech.2016.12.003
6. Masad, N.; Zollinger, D.; Kim, S. M.; and Grasley, Z., “Meso-Scale Model for Simulations of Concrete Subjected to Cryogenic Temperatures,” Materials and Structures, V. 49, No. 6, 2016, pp. 2141-2159. doi: 10.1617/s11527-015-0639-x
7. Fan, D., and Yang, S., “Mechanical Properties of C-S-H Globules and Interfaces by Molecular Dynamics Simulation,” Construction and Building Materials, V. 176, 2018, pp. 573-582. doi: 10.1016/j.conbuildmat.2018.05.085
8. Grassl, P.; Xenos, D.; Nyström, U.; Rempling, R.; and Gylltoft, K., “CDPM2: A Damage-Plasticity Approach to Modelling the Failure Of Concrete,” International Journal of Solids and Structures, V. 50, No. 24, 2013, pp. 3805-3816. doi: 10.1016/j.ijsolstr.2013.07.008
9. Hong, L.; Gu, X.; and Lin, F., “Influence of Aggregate Surface Roughness on Mechanical Properties of Interface and Concrete,” Construction and Building Materials, V. 65, 2014, pp. 338-349. doi: 10.1016/j.conbuildmat.2014.04.131
10. Xiao, J.; Li, W.; Corr, D. J.; and Shah, S. P., “Effects of Interfacial Transition Zones on the Stress–Strain Behavior of Modeled Recycled Aggregate Concrete,” Cement and Concrete Research, V. 52, 2013, pp. 82-99. doi: 10.1016/j.cemconres.2013.05.004
11. Gu, X.; Jia, J.; Wang, Z.; Hong, L.; and Lin, F., “Determination of Mechanical Parameters for Elements in Meso-Mechanical Models of Concrete,” Frontiers of Structural and Civil Engineering, V. 7, No. 4, 2013, pp. 391-401. doi: 10.1007/s11709-013-0225-7
12. Tregger, N.; Corr, D.; Graham-Brady, L.; and Shah, S., “Modeling the Effect Of Mesoscale Randomness on Concrete Fracture,” Probabilistic Engineering Mechanics, V. 21, No. 3, 2006, pp. 217-225. doi: 10.1016/j.probengmech.2005.11.002
13. Suchorzewski, J.; Tejchman, J.; and Nitka, M., “Experimental and Numerical Investigations of Concrete Behaviour at Meso-Level During Quasi-Static Splitting Tension,” Theoretical and Applied Fracture Mechanics, V. 96, 2018, pp. 720-739. doi: 10.1016/j.tafmec.2017.10.011
14. Hillerborg, A.; Modeer, M.; and Petersson, P. E., “Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement and Concrete Research, V. 6, No. 6, 1976, pp. 773-781. doi: 10.1016/0008-8846(76)90007-7
15. Shah, S. P., “Size-Effect Method for Determining Fracture Energy and Process Zone Size of Concrete,” Materials and Structures, V. 23, No. 6, 1990, pp. 461-465. doi: 10.1007/BF02472030
16. Barr, B. I. G.; Lee, M. K.; de Place Hansen, E. J.; Dupont, D.; Erdem, E.; Schaerlaekens, S.; Stang, H.; and Vandewalle, L., “Round-Robin Analysis of the RILEM TC 162-TDF Beam-Bending Test: Part 1—Test Method Evaluation,” Materials and Structures, V. 36, No. 9, 2003, pp. 609-620. doi: 10.1007/BF02483281
17. van Mier, J. G. M., and van Vliet, M. R. A., “Uniaxial Tension Test for the Determination of Fracture Parameters of Concrete: State of the Art,” Engineering Fracture Mechanics, V. 69, No. 2, 2002, pp. 235-247. doi: 10.1016/S0013-7944(01)00087-X
18. 162-TDF RT, “Recommendations of RILEM TC 162-TDF: Test and Design Methods for Steel Fibre Reinforced Concrete,” Materials and Structures, V. 34, No. 235, 2001, pp. 3-6.
19. Rao, G. A., and Raghu Prasad, B. K., “Influence of Type of Aggregate and Surface Roughness on the Interface Fracture Properties,” Materials and Structures, V. 37, No. 5, 2004, pp. 328-334. doi: 10.1007/BF02481679
20. Trawiński, W.; Bobiński, J.; and Tejchman, J., “Two-Dimensional Simulations of Concrete Fracture at Aggregate Level with Cohesive Elements Based on X-Ray µCT Images,” Engineering Fracture Mechanics, V. 168, 2016, pp. 204-226. doi: 10.1016/j.engfracmech.2016.09.012
21. Grassl, P., and Jirásek, M., “Meso-Scale Approach to Modelling the Fracture Process Zone of Concrete Subjected to Uniaxial Tension,” International Journal of Solids and Structures, V. 47, No. 7-8, 2010, pp. 957-968. doi: 10.1016/j.ijsolstr.2009.12.010
22. Zhang, P.; Hu, X.; Yang, S.; and Yao, W., “Modelling Progressive Failure in Multi-Phase Materials Using A Phase Field Method,” Engineering Fracture Mechanics, V. 209, 2019, pp. 105-124. doi: 10.1016/j.engfracmech.2019.01.021
23. Nitka, M., and Tejchman, J., “A Three-Dimensional Meso-Scale Approach to Concrete Fracture Based on Combined DEM With X-Ray µCT Images,” Cement and Concrete Research, V. 107, 2018, pp. 11-29. doi: 10.1016/j.cemconres.2018.02.006
24. López, C. M.; Carol, I.; and Aguado, A., “Meso-Structural Study of Concrete Fracture Using Interface Elements. I: Numerical Model and Tensile Behavior,” Materials and Structures, V. 41, No. 3, 2008, pp. 583-599. doi: 10.1617/s11527-007-9314-1
25. Amirkhanian, A. N.; Spring, D. W.; Roesler, J. R.; and Paulino, G. H., “Forward and Inverse Analysis of Concrete Fracture Using the Disk-Shaped Compact Tension Test,” Journal of Testing and Evaluation, V. 44, No. 1, 2016, p. 20140312 doi: 10.1520/JTE20140312
26. Shen, B., and Paulino, G. H., “Identification of Cohesive Zone Model and Elastic Parameters of Fiber-Reinforced Cementitious Composites Using Digital Image Correlation and a Hybrid Inverse Technique,” Cement and Concrete Composites, V. 33, No. 5, 2011, pp. 572-585. doi: 10.1016/j.cemconcomp.2011.01.005
27. Skarżyński, Ł.; Nitka, M.; and Tejchman, J., “Modelling of Concrete Fracture at Aggregate Level Using FEM and DEM Based on X-Ray Mct Images of Internal Structure,” Engineering Fracture Mechanics, V. 147, 2015, pp. 13-35. doi: 10.1016/j.engfracmech.2015.08.010
28. BS 882, “Specification for Aggregates from Natural Sources for Concrete,” British Standards Institution, London, UK, 1992.
29. Xi, X.; Yang, S.; Li, C.-Q.; Cai, M.; Hu, X.; and Shipton, Z. K., “Meso-Scale Mixed-Mode Fracture Modelling of Reinforced Concrete Structures Subjected to Non-Uniform Corrosion,” Engineering Fracture Mechanics, V. 199, 2018, pp. 114-130. doi: 10.1016/j.engfracmech.2018.05.036
30. Xi, X.; Yang, S.; and Li, C.-Q., “A Non-Uniform Corrosion Model and Meso-Scale Fracture Modelling of Concrete,” Cement and Concrete Research, V. 108, 2018, pp. 87-102. doi: 10.1016/j.cemconres.2018.03.009
31. Yang, S.; Xi, X.; Li, K.; and Li, C.-Q., “Numerical Modeling of Nonuniform Corrosion-Induced Concrete Crack Width,” Journal of Structural Engineering, ASCE, V. 144, No. 8, 2018, p. 04018120 doi: 10.1061/(ASCE)ST.1943-541X.0002108
32. Yang, S.; Li, K.; and Li, C.-Q., “Numerical Determination of Concrete Crack Width for Corrosion-Affected Concrete Structures,” Computers & Structures, V. 207, 2018, pp. 75-82. doi: 10.1016/j.compstruc.2017.07.016
33. Taylor, M. R.; Lydon, F. D.; and Barr, B. I. G., “Mix proportions for high strength concrete,” Construction and Building Materials, V. 10, No. 6, 1996, pp. 445-450. doi: 10.1016/0950-0618(96)00012-8
34. Yang, Z., and Frank Xu, X., “A Heterogeneous Cohesive Model for Quasi-Brittle Materials Considering Spatially Varying Random Fracture Properties,” Computer Methods in Applied Mechanics and Engineering, V. 197, No. 45-48, 2008, pp. 4027-4039. doi: 10.1016/j.cma.2008.03.027
35. Gercek, H., “Poisson’s Ratio Values for Rocks,” International Journal of Rock Mechanics and Mining Sciences, V. 44, No. 1, 2007, pp. 1-13. doi: 10.1016/j.ijrmms.2006.04.011
36. Rao, G. A., “Generalization of Abrams’ Law for Cement Mortars,” Cement and Concrete Research, V. 31, No. 3, 2001, pp. 495-502. doi: 10.1016/S0008-8846(00)00473-7
37. Singh, S.; Munjal, P.; and Thammishetti, N., “Influence of Water-Cement Ratio on Mechanical Properties of Cement Mortar,” 3rd UKIERI Concrete Congress., Punjab, India, 2015.
38. Ren, W.; Yang, Z.; Sharma, R.; Zhang, C.; and Withers, P. J., “Two-Dimensional X-Ray CT Image Based Meso-Scale Fracture Modelling of Concrete,” Engineering Fracture Mechanics, V. 133, 2015, pp. 24-39. doi: 10.1016/j.engfracmech.2014.10.016
39. Russell, S., and Norvig, P., Artificial Intelligence: A Modern Approach, third edition, Prentice Hall, Upper Saddle River, NJ, 2009.
40. Papazafeiropoulos, G.; Muñiz-Calvente, M.; and Martínez-Pañeda, E., “Abaqus2Matlab: a Suitable Tool for Finite Element Post-processing,” Advances in Engineering Software, V. 105, 2017, pp. 9-16. doi: 10.1016/j.advengsoft.2017.01.006
41. Karimi, I.; Khaji, N.; Ahmadi, M. T.; and Mirzayee, M., “System Identification of Concrete Gravity Dams Using Artificial Neural Networks Based on a Hybrid Finite Element–Boundary Element Approach,” Engineering Structures, V. 32, No. 11, 2010, pp. 3583-3591. doi: 10.1016/j.engstruct.2010.08.002
42. Ren, W.; Yang, Z.; Sharma, R.; McDonald, S. A.; and Mummery, P. M., “Three-Dimensional In Situ XCT Characterisation and FE Modelling of Cracking in Concrete,” Complexity, V. 2018, 2018, pp. 1-11. doi: 10.1155/2018/3856584
43. Gong, F.; Zhang, D.; Sicat, E.; and Ueda, T., “Empirical Estimation of Pore Size Distribution in Cement, Mortar, and Concrete,” Journal of Materials in Civil Engineering, ASCE, V. 26, No. 7, 2014, p. 04014023 doi: 10.1061/(ASCE)MT.1943-5533.0000945