Rate of Hydration of Lignocellulosic Fiber-Reinforced Hydrated Cement

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Rate of Hydration of Lignocellulosic Fiber-Reinforced Hydrated Cement

Author(s): Sutapa Deb, Nilanjan Mitra, Subhasish Basu Majumdar, and Debasis Roy

Publication: Materials Journal

Volume: 117

Issue: 6

Appears on pages(s): 177-186

Keywords: cellulose; hydration rate; jute fiber; lignin; ordinary portland cement hydration; ramie fiber

DOI: 10.14359/51726994

Date: 11/1/2020

Abstract:
Does addition of lignocellulosic fibers alter the rate of hydration of fiber-reinforced cementitious composites? This question is being probed in this paper through a series of tests involving thermal analysis, Fourier transform infrared (FTIR) spectra, and X-ray diffraction (XRD) investigations along with standard setting time tests. It could be observed that retardation of hydration rate can be achieved with addition of increasing percentage of fibers (irrespective of the source: jute or ramie). It is also observed that treated jute has more hydration rate retardation capability in comparison to that of treated ramie. The probable reason for this effect is that the amorphous part of cellulose (obtained more in treated jute in comparison to that of treated ramie) attaches to the Ca2+ ions (thereby decreasing the amount of Ca(OH)2 released in fiber-reinforced cement paste) in the calcium silicate hydrate (CSH) gel to result in this retardation effect.

Related References:

1. Wambua, P.; Ivens, J.; and Verpoest, I., “Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics?” Composites Science and Technology, V. 63, No. 9, 2003, pp. 1259-1264. doi: 10.1016/S0266-3538(03)00096-4

2. Joshi, S. V.; Drzal, L. T.; Mohanty, A. K.; and Arora, S., “Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites?” Composites. Part A, Applied Science and Manufacturing, V. 35, No. 3, 2004, pp. 371-376. doi: 10.1016/j.compositesa.2003.09.016

3. Silva, F. A.; Chawla, N.; and Filho, R. D. T., “Tensile Behavior of High Performance Natural (Sisal) Fibers,” Composites Science and Technology, V. 68, No. 15-16, 2008, pp. 3438-3443. doi: 10.1016/j.compscitech.2008.10.001

4. Wei, J., and Meyer, C., “Degradation of Natural Fiber in Ternary Blended Cement Composites Containing Metakaolin and Montmorillonite,” Corrosion Science, V. 120, May, 2017, pp. 42-60. doi: 10.1016/j.corsci.2016.12.004

5. Wei, J., and Meyer, C., “Degradation Mechanisms of Natural Fiber in the Matrix of Cement Composites,” Cement and Concrete Research, V. 73, 2015, pp. 1-16. doi: 10.1016/j.cemconres.2015.02.019

6. Tolêdo Filho, R. D.; Scrivener, K.; England, G. L.; and Ghavami, K., “Durability of Alkali-Sensitive Sisal and Coconut Fibres in Cement Mortar Composites,” Cement and Concrete Composites, V. 22, No. 2, 2000, pp. 127-143. doi: 10.1016/S0958-9465(99)00039-6

7. Alves Fidelis, M. E.; Pereira, T. V. C.; Gomes, O. D. F. M.; de Andrade Silva, F. A.; and Toledo Filho, R. D., “The Effect of Fiber Morphology on the Tensile Strength of Natural Fibers,” Journal of Materials Research and Technology, V. 2, No. 2, 2013, pp. 149-157. doi: 10.1016/j.jmrt.2013.02.003

8. Gao, D.-W.; Hu, Q.; Pan, H.; Jiang, J.; and Wang, P., “High-Capacity Adsorption of Aniline Using Surface Modification of Lignocellulose-Biomass Jute Fibers,” Bioresource Technology, V. 193, Oct, 2015, pp. 507-512. doi: 10.1016/j.biortech.2015.06.138

9. Hu, Q.; Wang, P.; Jiang, J.; Pan, H.; and Gao, D. W., “Column Adsorption of Aniline by a Surface Modified Jute Fiber and Its Regeneration Property,” Journal of Environmental Chemical Engineering, V. 4, No. 2, 2016, pp. 2243-2249. doi: 10.1016/j.jece.2016.03.022

10. Fonseca, C. S.; Silva, M. F.; Mendes, R. F.; Hein, P. R. G.; Zangiacomo, A. L.; Savastano, H. Jr.; and Tonoli, G. H. D., “Jute Fibers and Micro/Nanofibrils as Reinforcement in Extruded Fiber-Cement Composites,” Construction and Building Materials, V. 211, 2019, pp. 517-527. doi: 10.1016/j.conbuildmat.2019.03.236

11. Ramakrishna, G., and Sundararajan, T., “Studies on the Durability of Natural Fibres and the Effect of Corroded Fibres on the Strength of Mortar,” Cement and Concrete Composites, V. 27, No. 5, 2005, pp. 575-582. doi: 10.1016/j.cemconcomp.2004.09.008

12. Ramaswamy, H. S.; Ahuja, B. M.; and Krishnamoorthy, S., “Behaviour of Concrete Reinforced with Jute, Coir and Bamboo Fibres,” International Journal of Cement Composites and Lightweight Concrete, V. 5, No. 1, 1983, pp. 3-13. doi: 10.1016/0262-5075(83)90044-1

13. Pacheco-Torgal, F., and Jalali, S., “Cementitious Building Materials Reinforced with Vegetable Fibres: A Review,” Construction and Building Materials, V. 25, No. 2, 2011, pp. 575-581. doi: 10.1016/j.conbuildmat.2010.07.024

14. Vitorino, F. C.; Toledo Filho, R. D.; and Dweck, J., “Hydration at Early Ages of Styrene-Butadiene Copolymers Cementitious Systems,” Journal of Thermal Analysis and Calorimetry, V. 131, No. 2, 2018, pp. 1041-1054. doi: 10.1007/s10973-017-6678-5

15. Chakraborty, S.; Kundu, S. P.; Roy, A.; Adhikari, B.; and Majumder, S. B., “Effect of Jute as Fiber Reinforcement Controlling the Hydration Characteristics of Cement Matrix,” Industrial & Engineering Chemistry Research, V. 52, No. 3, 2013, pp. 1252-1260. doi: 10.1021/ie300607r

16. Thomas, N. L., and Birchall, J. D., “The Retarding Action of Sugars on Cement Hydration,” Cement and Concrete Research, V. 13, No. 6, 1983, pp. 830-842. doi: 10.1016/0008-8846(83)90084-4

17. Garci Juenger, M. C., and Jennings, H. M., “New Insights into the Effects of Sugar on the Hydration and Microstructure of Cement Pastes,” Cement and Concrete Research, V. 32, No. 3, 2002, pp. 393-399. doi: 10.1016/S0008-8846(01)00689-5

18. Kochova, K.; Schollbach, K.; Gauvin, F.; and Brouwers, H. J. H., “Effect of Saccharides on the Hydration of Ordinary Portland Cement,” Construction and Building Materials, V. 150, 2017, pp. 268-275. doi: 10.1016/j.conbuildmat.2017.05.149

19. Singh, N. B.; Singh, V. D.; and Rai, S., “Hydration of Bagasse Ash-Blended Portland Cement,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1485-1488. doi: 10.1016/S0008-8846(00)00324-0

20. Yasuda, S.; Ima, K.; and Matsushita, Y., “Manufacture of Wood-Cement Boards VII: Cement-Hardening Inhibitory Compounds of Hannoki (Japanese Alder, Alnus Japonica Steud.),” Journal of Wood Science, V. 48, No. 3, 2002, pp. 242-244. doi: 10.1007/BF00771375

21. Nazerian, M.; Gozali, E.; and Dahmardeh, M., “The Influence of Wood Extractives and Additives on the Hydration Kinetics of Cement Paste and Cement-Bonded Particleboard,” Journal of Applied Sciences (Faisalabad), V. 11, No. 12, 2011, pp. 2186-2192. doi: 10.3923/jas.2011.2186.2192

22. IS, 12269-1987, “Specification for 53 Grade Ordinary Portland Cement (Reaffirmed 1999),” Bureau of Indian Standards, New Delhi, 1987.

23. Sanyal, T., and Chakraborty, K., “Application of a Bitumen-Coated Jute Geotextile in Bank-Protection Works in the Hooghly Estuary,” Geotextiles and Geomembranes, V. 13, No. 2, 1994, pp. 127-132. doi: 10.1016/0266-1144(94)90044-2

24. Sinha, S., and Chakraborty, S., “A Rot Resistant Durable Natural Fibre and/or Geo-Textiles,” PCT/IN2004000119, 2004.

25. Saha, P.; Roy, D.; Manna, S.; Adhikari, B.; Sen, R.; and Roy, S., “Durability of Transesterified Jute Geotextiles,” Geotextiles and Geomembranes, V. 35, Dec, 2012, pp. 69-75. doi: 10.1016/j.geotexmem.2012.07.003

26. Jayaraman, K., “Manufacturing Sisal-Polypropylene Composites with Minimum Fibre Degradation,” Composites Science and Technology, V. 63, No. 3-4, 2003, pp. 367-374. doi: 10.1016/S0266-3538(02)00217-8

27. Pejic, B. M.; Kostic, M. M.; Skundric, P. D.; and Praskalo, J. Z., “The Effects of Hemicelluloses and Lignin Removal on Water Uptake Behavior of Hemp Fibers,” Bioresource Technology, V. 99, No. 15, 2008, pp. 7152-7159. doi: 10.1016/j.biortech.2007.12.073

28. Rosa, M. F.; Chiou, B.; Medeiros, E. S.; Wood, D. F.; Williams, T. G.; Mattoso, L. H. C.; Orts, W. J.; and Imam, S. H., “Effect of Fiber Treatments on Tensile and Thermal Properties of Starch/Ethylene Vinyl Alcohol Copolymers/Coir Biocomposites,” Bioresource Technology, V. 100, No. 21, 2009, pp. 5196-5202. doi: 10.1016/j.biortech.2009.03.085

29. Bledzki, A. K., and Gassan, J., “Composites Reinforced with Cellulose Based Fibres,” Progress in Polymer Science, V. 24, No. 2, 1999, pp. 221-274. doi: 10.1016/S0079-6700(98)00018-5

30. Ray, D.; Sarkar, B. K.; Basak, R. K.; and Rana, A. K., “Study of the Thermal Behavior of Alkali-Treated Jute Fibers,” Journal of Applied Polymer Science, V. 85, No. 12, 2002, pp. 2594-2599. doi: 10.1002/app.10934

31. Gassan, J., and Bledzki, A. K., “Alkali Treatment of Jute Fibers: Relationship between Structure and Mechanical Properties,” Journal of Applied Polymer Science, V. 71, No. 4, 1999, pp. 623-629. doi: 10.1002/(SICI)1097-4628(19990124)71:43.0.CO;2-K

32. Saha, P.; Manna, S.; Chowdhury, S. R.; Sen, R.; Roy, D.; and Adhikari, B., “Enhancement of Tensile Strength of Lignocellulosic Jute Fibers by Alkali-Steam Treatment,” Bioresource Technology, V. 101, No. 9, 2010, pp. 3182-3187. doi: 10.1016/j.biortech.2009.12.010

33. Roy, A.; Chakraborty, S.; Kundu, S. P.; Basak, R. K.; Basu Majumder, S.; and Adhikari, B., “Improvement in Mechanical Properties of Jute Fibres through Mild Alkali Treatment as Demonstrated by Utilisation of the Weibull Distribution Model,” Bioresource Technology, V. 107, 2012, pp. 222-228. doi: 10.1016/j.biortech.2011.11.073

34. ASTM D1776-04, “Standard Practice for Conditioning and Testing Textiles,” ASTM International, West Conshohocken, PA, 2004, 4 pp.

35. Choi, H. Y., and Lee, J. S., “Effects of Surface Treatment of Ramie Fibers in a Ramie/Poly(Lactic Acid) Composite,” Fibers and Polymers, V. 13, No. 2, 2012, pp. 217-223. doi: 10.1007/s12221-012-0217-6

36. Liu, X., and Cheng, L., “Influence of Plasma Treatment on Properties of Ramie Fiber and the Reinforced Composites,” Journal of Adhesion Science and Technology, V. 31, No. 15, 2017, pp. 1723-1734. doi: 10.1080/01694243.2016.1275095

37. Xu, C.; Gu, Y.; Yang, Z.; Li, M.; Li, Y.; and Zhang, Z., “Mechanical Properties of Surface-Treated Ramie Fiber Fabric/Epoxy Resin Composite Fabricated by Vacuum-Assisted Resin Infusion Molding with Hot Compaction,” Journal of Composite Materials, V. 50, No. 9, 2016, pp. 1189-1198. doi: 10.1177/0021998315590259

38. Yuan, J. M.; Feng, Y. R.; and He, L. P., “Effect of Thermal Treatment on Properties of Ramie Fibers,” Polymer Degradation & Stability, V. 133, 2016, pp. 303-311. doi: 10.1016/j.polymdegradstab.2016.09.012

39. Mitchell, L. D., and Margeson, J. C., “The Effects of Solvents on C-S-H as Determined by Thermal Analysis,” Journal of Thermal Analysis and Calorimetry, V. 86, No. 3, 2006, pp. 591-594. doi: 10.1007/s10973-006-7712-1

40. Bye, G. C., Portland Cement: Composition, Production and Properties, Thomas Telford Publishing, London, UK, 1999.

41. Pressler, E. E.; Brunauer, S.; and Kantro, D. L., “Investigation of Franke Method of Determining Free Calcium Hydroxide and Free Calcium Oxide,” Analytical Chemistry, V. 28, No. 5, 1956, pp. 896-902. doi: 10.1021/ac60113a036

42. Rai, S.; Chaturvedi, S.; and Singh, N. B., “Examination of Portland Cement Paste Hydrated in the Presence of Malic Acid,” Cement and Concrete Research, V. 34, No. 3, 2004, pp. 455-462. doi: 10.1016/j.cemconres.2003.08.024

43. Franck, R., Bast and Other Plant Fibres, CRC Press, Boca Raton, FL, 2005.

44. Åkerholm, M.; Hinterstoisser, B.; and Salmén, L., “Characterization of the Crystalline Structure of Cellulose Using Static and Dynamic FT-IR Spectroscopy,” Carbohydrate Research, V. 339, No. 3, 2004, pp. 569-578. doi: 10.1016/j.carres.2003.11.012

45. Poletto, M.; Ornaghi, H. L.; and Zattera, A. J., “Native Cellulose: Structure, Characterization and Thermal Properties,” Materials (Basel), V. 7, No. 9, 2014, pp. 6105-6119. doi: 10.3390/ma7096105

46. Nelson, M. L., and O’Connor, R. T., “Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Latticed Type. Part I. Spectra of Lattice Types I, II, III and of Amorphous Cellulose,” Journal of Applied Polymer Science, V. 8, No. 3, 1964, pp. 1311-1324. doi: 10.1002/app.1964.070080322

47. Oh, S. Y.; Yoo, D. I.; Shin, Y.; and Seo, G., “FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide,” Carbohydrate Research, V. 340, No. 3, 2005, pp. 417-428. doi: 10.1016/j.carres.2004.11.027

48. Segal, L.; Creely, J. J.; Martin, A. E. Jr.; and Conrad, C. M., “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer,” Textile Research Journal, V. 29, No. 10, 1959, pp. 786-794. doi: 10.1177/004051755902901003

49. Gümüskaya, E.; Usta, M.; and Kirci, H., “The Effects of Various Pulping Conditions on Crystalline Structure of Cellulose in Cotton Linters,” Polymer Degradation & Stability, V. 81, No. 3, 2003, pp. 559-564. doi: 10.1016/S0141-3910(03)00157-5

50. Mohkami, M., and Talaeipour, M., “Investigation of the Chemical Structure of Carboxylated and Carboxymethylated Fibers from Waste Paper via Xrd and Ftir Analysis,” BioResources, V. 6, No. 2, 2011, pp. 1988-2003.

51. Chedella, S. C. V., and Berzins, D. W., “A Differential Scanning Calorimetry Study of the Setting Reaction of MTA,” International Endodontic Journal, V. 43, No. 6, 2010, pp. 509-518. doi: 10.1111/j.1365-2591.2010.01708.x

52. Midgley, H. G., “The Determination of Calcium Hydroxide in Set Portland Cements,” Cement and Concrete Research, V. 9, No. 1, 1979, pp. 77-82. doi: 10.1016/0008-8846(79)90097-8

53. Abdelrazig, B. E. I.; Bonner, D. G.; Nowell, D. V.; Egan, P. J.; and Dransfield, J. M., “Estimation of the Degree of Hydration in Modified Ordinary Portland Cement Pastes by Differential Scanning Calorimetry,” Thermochimica Acta, V. 145, 1989, pp. 203-217. doi: 10.1016/0040-6031(89)85140-8

54. Meziani, M.; Chelouah, N.; Amiri, O.; and Leklou, N., “Blended Cement Hydration Assessment by Thermogravimetric Analysis and Isothermal Calorimetry,” MATEC Web of Conferences, V. 149, 2018, pp. 1-7. doi: 10.1051/matecconf/20171490106210.1051/matecconf/201714901062

55. Liu, Z.; Sha, A.; Hu, L.; Lu, Y.; Jiao, W.; Tong, Z.; and Gao, J., “Kinetic and Thermodynamic Modeling of Portland Cement Hydration at Low Temperatures,” Chemical Papers, V. 71, No. 4, 2017, pp. 741-751. doi: 10.1007/s11696-016-0007-5

56. Ghosh, S. N., ed., “Infrared Spectroscopic Study of Cement and Raw Material,” Cement and Concrete Science and Technology, V. II, ABI Books, New Delhi, 1992, pp. 222-252.

57. Ylmén, R.; Jäglid, U.; Steenari, B. M.; and Panas, I., “Early Hydration and Setting of Portland Cement Monitored by IR, SEM and Vicat Techniques,” Cement and Concrete Research, V. 39, No. 5, 2009, pp. 433-439. doi: 10.1016/j.cemconres.2009.01.017

58. Yousuf, M.; Mollah, A.; Palta, P.; Hess, T. R.; Vempati, R. K.; and Cocke, D. L., “Chemical and Physical Effects of Sodium Lignosulfonate Superplasticizer on the Hydration of Portland Cement and Solidification/Stabilization Consequences,” Cement and Concrete Research, V. 25, No. 3, 1995, pp. 671-682. doi: 10.1016/0008-8846(95)00055-H

59. García Lodeiro, I.; Macphee, D. E.; Palomo, A.; and Fernández-Jiménez, A., “Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis,” Cement and Concrete Research, V. 39, No. 3, 2009, pp. 147-153. doi: 10.1016/j.cemconres.2009.01.003

60. Sinha, E., and Rout, S., “Influence of Fibre-Surface Treatment on Structural, Thermal and Mechanical Properties of Jute,” Journal of Materials Science, V. 43, No. 8, 2008, pp. 2590-2601. doi: 10.1007/s10853-008-2478-4

61. Taylor, H. F. W., Cement Chemistry, second edition, Thomas Telford Publishing, London, UK, 1997. doi: 10.1680/cc.25929.10.1680/cc.25929

62. Mitra, N.; Sarkar, P.; Deb, S.; and Basu Majumder, S., “Multiscale Estimation of Elastic Constants of Hydrated Cement,” Journal of Engineering Mechanics, ASCE, V. 145, No. 4, 2019, p. 04019014 doi: 10.1061/(ASCE)EM.1943-7889.0001582


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer