Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Chloride Diffusion in Limestone Flash Calcined Clay Cement Concrete

Author(s): Quang Dieu Nguyen, Mohammad S. H. Khan, and Arnaud Castel

Publication: Materials Journal

Volume: 117

Issue: 6

Appears on pages(s): 165-175

Keywords: accelerated test; binding capacity; chloride diffusion; flash calcined clay; Friedel’s salt; limestone-calcined clay-cement (LC3); limestone

DOI: 10.14359/51725986

Date: 11/1/2020

Abstract:
This study aims to assess the influence of using a flash-calcined clay and limestone blend as a supplementary cementitious material on the chloride diffusion resistance of concrete. A limestone and calcined-clay blend was used as any other supplementary cementitious material (SCM) in Australia is by straight replacement of general purpose cement in the concrete mixture without any optimization of sulfate content or alkalinity of the blended cement to reduce the time for the adoption of limestone and flash-calcined- clay blends in the industry. The bulk diffusion test results show that the resistance of concrete containing a flash-calcined clay and limestone blend (LC3 concrete) to chloride diffusion is greatly improved compared to that of a reference general purpose cement-based concrete. The apparent chloride diffusion coefficient of LC3 concrete is more than four times lower due to the increase in its chloride binding capacity and refinement of pore structure. Chloride binding capacity is not captured by the rapid chloride penetration test (RCPT) or rapid migration test (RMT). Hence, accelerated test protocols involving externally applied electrical voltage greatly underestimate the resistance of LC3 concrete to chloride diffusion.

Related References:

1. Flatt, R. J.; Roussel, N.; and Cheeseman, C. R., “Concrete: An Eco Material that Needs to Be Improved,” Journal of the European Ceramic Society, V. 32, No. 11, 2012, pp. 2787-2798. doi: 10.1016/j.jeurceramsoc.2011.11.012

2. Damtoft, J. S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; and Gartner, E. M., “Sustainable Development and Climate Change Initiatives,” Cement and Concrete Research, V. 38, No. 2, 2008, pp. 115-127. doi: 10.1016/j.cemconres.2007.09.008

3. Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; and Meida, L. O., “Carbon Dioxide Emissions from the Global Cement Industry,” Annual Review of Energy and the Environment, V. 26, No. 1, 2001, pp. 303-329. doi: 10.1146/annurev.energy.26.1.303

4. Koch, G. H.; Brongers, M. P.; Thompson, N. G.; Virmani, Y. P.; and Payer, J. H., “Corrosion Cost and Preventive Strategies in the United States,” Federal Highway Administration, Washington, DC, 2002.

5. Angst, U. M., “Challenges and Opportunities in Corrosion of Steel in Concrete,” Materials and Structures, V. 51, 2018.

6. Page, C. L., “Mechanism of Corrosion Protection in Reinforced-Concrete Marine Structures,” Nature, V. 258, No. 5535, 1975, pp. 514-515. doi: 10.1038/258514a0

7. Page, C. L., and Treadaway, K. W. J., “Aspects of the Electrochemistry of Steel in Concrete,” Nature, V. 297, No. 5862, 1982, pp. 109-115. doi: 10.1038/297109a0

8. Bertolini, L.; Elsener, B.; Pedeferri, P.; Redaelli, E.; and Polder, R. B., Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair, John Wiley & Sons, Incorporated, Weinheim, Germany, 2013.

9. Tuutti, K., “Corrosion of Steel in Concrete,” Swedish Cement and Concrete Research Institute, Stockholm, Sweden, 1982.

10. Angst, U.; Ronnquist, A.; Elsener, B.; Larsen, C. K.; and Vennesland, O., “Probabilistic Considerations on the Effect of Specimen Size on the Critical Chloride Content in Reinforced Concrete,” Corrosion Science, V. 53, No. 1, 2011, pp. 177-187. doi: 10.1016/j.corsci.2010.09.017

11. Angst, U. M., and Elsener, B., “The Size Effect in Corrosion Greatly Influences the Predicted Life Span of Concrete Infrastructures,” Science Advances, V. 3, No. 8, 2017, p. e1700751 doi: 10.1126/sciadv.1700751

12. Gulikers, J., “Considerations on the Reliability of Service Life Predictions Using a Probabilistic Approach,” Journal de Physique IV (Proceedings), V. 136, 2006, pp. 233-241. doi: 10.1051/jp4:2006136024

13. Thomas, M. D. A.; Hooton, R. D.; Scott, A.; and Zibara, H., “The Effect of Supplementary Cementitious Materials on Chloride Binding in Hardened Cement Paste,” Cement and Concrete Research, V. 42, No. 1, 2012, pp. 1-7. doi: 10.1016/j.cemconres.2011.01.001

14. Diamond, S., “Chloride Concentrations in Concrete Pore Solutions Resulting from Calcium and Sodium Chloride Admixtures,” Cement, Concrete and Aggregates, V. 8, No. 2, 1986, pp. 97-102. doi: 10.1520/CCA10062J

15. Roberts, M. H., “Effect of Calcium Chloride on the Durability of Pre-Tensioned Wire in Prestressed Concrete,” Magazine of Concrete Research, V. 14, No. 42, 1962, pp. 143-154. doi: 10.1680/macr.1962.14.42.143

16. Elakneswaran, Y.; Nawa, T.; and Kurumisawa, K., “Electrokinetic Potential of Hydrated Cement in Relation to Adsorption of Chlorides,” Cement and Concrete Research, V. 39, No. 4, 2009, pp. 340-344. doi: 10.1016/j.cemconres.2009.01.006

17. Hirao, H.; Yamada, K.; Takahashi, H.; and Zibara, H., “Chloride Binding of Cement Estimated by Binding Isotherms of Hydrates,” Journal of Advanced Concrete Technology, V. 3, No. 1, 2005, pp. 77-84. doi: 10.3151/jact.3.77

18. Ramachandran, V. S.; Seeley, R. C.; and Polomark, G. M., “Free and Combined Chloride in Hydrating Cement and Cement Components,” Matériaux et Constructions, V. 17, No. 4, 1984, pp. 285-289. doi: 10.1007/BF02479084

19. Ramachandran, V. S., “Possible States of Chloride in the Hydration of Tricalcium silicate in the Presence of Calcium Chloride,” Matériaux et Constructions, V. 4, No. 1, 1971, pp. 3-12. doi: 10.1007/BF02473926

20. Plusquellec, G., and Nonat, A., “Interactions between Calcium Silicate Hydrate (C-S-H) and calcium Chloride, Bromide and Nitrate,” Cement and Concrete Research, V. 90, 2016, pp. 89-96. doi: 10.1016/j.cemconres.2016.08.002

21. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001

22. Snellings, R.; Mertens, G.; and Elsen, J., “Supplementary Cementitious Materials,” Reviews in Mineralogy and Geochemistry, V. 74, No. 1, 2012, pp. 211-278. doi: 10.2138/rmg.2012.74.6

23. Angst, U.; Elsener, B.; Larsen, C. K.; and Vennesland, Ø., “Critical Chloride Content in Reinforced Concrete — A Review,” Cement and Concrete Research, V. 39, No. 12, 2009, pp. 1122-1138. doi: 10.1016/j.cemconres.2009.08.006

24. Arya, C.; Buenfeld, N. R.; and Newman, J. B., “Factors Influencing Chloride-Binding in Concrete,” Cement and Concrete Research, V. 20, No. 2, 1990, pp. 291-300. doi: 10.1016/0008-8846(90)90083-A

25. Dhir, R. K., and Jones, M. R., “Development of Chloride-Resisting Concrete Using Fly Ash,” Fuel, V. 78, No. 2, 1999, pp. 137-142. doi: 10.1016/S0016-2361(98)00149-5

26. Dhir, R. K.; ElMohr, M. A. K.; and Dyer, T. D., “Chloride Binding in GGBS Concrete,” Cement and Concrete Research, V. 26, No. 12, 1996, pp. 1767-1773. doi: 10.1016/S0008-8846(96)00180-9

27. Luo, R.; Cai, Y. B.; Wang, C. Y.; and Huang, X. M., “Study of Chloride Binding and Diffusion in GGBS Concrete,” Cement and Concrete Research, V. 33, No. 1, 2003, pp. 1-7. doi: 10.1016/S0008-8846(02)00712-3

28. Page, C. L., and Vennesland, Ø., “Pore Solution Composition and Chloride Binding Capacity of Silica-Fume Cement Pastes,” Matériaux et Constructions, V. 16, No. 1, 1983, pp. 19-25. doi: 10.1007/BF02474863

29. Scrivener, K.; Martirena, F.; Bishnoi, S.; and Maity, S., “Calcined Clay Limestone Cements (LC3),” Cement and Concrete Research, V. 114, 2018, pp. 49-56. doi: 10.1016/j.cemconres.2017.08.017

30. Antoni, M.; Rossen, J.; Martirena, F.; and Scrivener, K., “Cement Substitution by a Combination of Metakaolin and Limestone,” Cement and Concrete Research, V. 42, No. 12, 2012, pp. 1579-1589. doi: 10.1016/j.cemconres.2012.09.006

31. Tironi, A.; Scian, A. N.; and Irassar, E. F., “Blended Cements with Limestone Filler and Kaolinitic Calcined Clay: Filler and Pozzolanic Effects,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 9, 2017, p. 04017116. doi: 10.1061/(ASCE)MT.1943-5533.0001965

32. Kunther, W.; Dai, Z.; and Skibsted, J., “Thermodynamic Modeling of Hydrated White Portland Cement-Metakaolin-Limestone Blends Utilizing Hydration Kinetics from Si-29 MAS NMR Spectroscopy,” Cement and Concrete Research, V. 86, 2016, pp. 29-41. doi: 10.1016/j.cemconres.2016.04.012

33. Shi, Z. G.; Geiker, M. R.; De Weerdt, K.; Ostnor, T. A.; Lothenbach, B.; Winnefeld, F.; and Skibsted, J., “Role of Calcium on Chloride Binding in Hydrated Portland Cement-Metakaolin-Limestone Blends,” Cement and Concrete Research, V. 95, 2017, pp. 205-216. doi: 10.1016/j.cemconres.2017.02.003

34. Shi, Z. G.; Geiker, M. R.; Lothenbach, B.; De Weerdt, K.; Garzon, S. F.; Enemark-Rasmussen, K.; and Skibsted, J., “Friedel’s Salt Profiles from Thermogravimetric Analysis and Thermodynamic Modelling of Portland Cement-Based Mortars Exposed to Sodium Chloride Solution,” Cement and Concrete Composites, V. 78, 2017, pp. 73-83. doi: 10.1016/j.cemconcomp.2017.01.002

35. Vance, K.; Aguayo, M.; Oey, T.; Sant, G.; and Neithalath, N., “Hydration and Strength Development in Ternary Portland Cement Blends Containing Limestone and Fly Ash or Metakaolin,” Cement and Concrete Composites, V. 39, 2013, pp. 93-103. doi: 10.1016/j.cemconcomp.2013.03.028

36. Vance, K.; Kumar, A.; Sant, G.; and Neithalath, N., “The Rheological Properties of Ternary Binders Containing Portland Cement, Limestone, and Metakaolin or Fly Ash,” Cement and Concrete Research, V. 52, 2013, pp. 196-207. doi: 10.1016/j.cemconres.2013.07.007

37. Khan, M. S. H.; Nguyen, Q. D.; and Castel, A., Carbonation of Limestone Calcined Clay Cement Concrete, Springer Netherlands, Dordrecht, the Netherlands, 2018, pp. 238-243.

38. Nguyen, Q. D.; Khan, M. S. H.; and Castel, A., “Engineering Properties of Limestone Calcined Clay Concrete,” Journal of Advanced Concrete Technology, V. 16, No. 8, 2018, pp. 343-357. doi: 10.3151/jact.16.343

39. Khan, M. S. H.; Nguyen, Q. D.; and Castel, A., “Performance of Limestone Calcined Clay Blended Cement-Based Concrete Against Carbonation,” Advances in Cement Research, V. 32, No. 11, 2020, pp. 481-491. doi: 10.1680/jadcr.18.00172

40. Nguyen, Q. D., and Castel, A., “Reinforcement Corrosion in Limestone Flash Calcined Clay Cement-Based Concrete,” Cement and Concrete Research, V. 132, 2020, p. 106051 doi: 10.1016/j.cemconres.2020.106051

41. Berriel, S. S.; Favier, A.; Dominguez, E. R.; Machado, I. R. S.; Heierli, U.; Scrivener, K.; Hernandez, F. M.; and Habert, G., “Assessing the Environmental and Economic Potential of Limestone Calcined Clay Cement in Cuba,” Journal of Cleaner Production, V. 124, 2016, pp. 361-369. doi: 10.1016/j.jclepro.2016.02.125

42. Dhandapani, Y.; Sakthivel, T.; Santhanam, M.; Gettu, R.; and Pillai, R. G., “Mechanical Properties and Durability Performance of Concretes with Limestone Calcined Clay Cement (LC3),” Cement and Concrete Research, V. 107, 2018, pp. 136-151. doi: 10.1016/j.cemconres.2018.02.005

43. Shi, Z.; Ferreiro, S.; Lothenbach, B.; Geiker, M. R.; Kunther, W.; Kaufmann, J.; Herfort, D.; and Skibsted, J., “Sulfate Resistance of Calcined Clay – Limestone – Portland Cements,” Cement and Concrete Research, V. 116, 2019, pp. 238-251. doi: 10.1016/j.cemconres.2018.11.003

44. Avet, F.; Sofia, L.; and Scrivener, K., “Concrete Performance of Limestone Calcined Clay Cement (LC3) Compared with Conventional Cements,” Advances in Civil Engineering Materials, V. 8, No. 3, 2019, pp. 275-286. doi: 10.1520/ACEM20190052

45. Avet, F., and Scrivener, K., “Investigation of the Calcined Kaolinite Content on the Hydration of Limestone Calcined Clay Cement (LC3),” Cement and Concrete Research, V. 107, 2018, pp. 124-135. doi: 10.1016/j.cemconres.2018.02.016

46. Maraghechi, H.; Avet, F.; Wong, H.; Kamyab, H.; and Scrivener, K., “Performance of Limestone Calcined Clay Cement (LC3) with Various Kaolinite Contents with Respect to Chloride Transport,” Materials and Structures, V. 51, No. 5, 2018, p. 125 doi: 10.1617/s11527-018-1255-3

47. Sui, S.; Georget, F.; Maraghechi, H.; Sun, W.; and Scrivener, K., “Towards a Generic Approach to Durability: Factors Affecting Chloride Transport in Binary and Ternary Cementitious Materials,” Cement and Concrete Research, V. 124, 2019, p. 105783 doi: 10.1016/j.cemconres.2019.105783

48. Pillai, R. G.; Gettu, R.; Santhanam, M.; Rengaraju, S.; Dhandapani, Y.; Rathnarajan, S.; and Basavaraj, A. S., “Service Life and Life Cycle Assessment of Reinforced Concrete Systems with Limestone Calcined Clay Cement (LC3),” Cement and Concrete Research, V. 118, 2019, pp. 111-119. doi: 10.1016/j.cemconres.2018.11.019

49. Nguyen, Q. D.; Afroz, S.; and Castel, A., “Influence of Calcined Clay Reactivity on the Mechanical Properties and Chloride Diffusion Resistance of Limestone Calcined Clay Cement (LC3) Concrete,” Journal of Marine Science and Engineering, V. 8, No. 5, 2020, p. 301 doi: 10.3390/jmse8050301

50. ASTM C1202-17a, “Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration,” ASTM International, West Conshohocken, PA, 2017, 8 pp.

51. Build, N. T., 492, “Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments,” NORDTEST, Espoo, Finland, 1999.

52. ASTM C1556-11a(2016), “Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion,” ASTM International, West Conshohocken, PA, 2016, 7 pp.

53. AS 3972, “General Purpose and Blended Cements,” Standards Australia, Sydney, Australia, 2010.

54. San Nicolas, R.; Cyr, M.; and Escadeillas, G., “Characteristics and Applications of Flash Metakaolins,” Applied Clay Science, V. 83, No. 84, 2013, pp. 253-262. doi: 10.1016/j.clay.2013.08.036

55. Medjigbodo, G.; Roziere, E.; Charrier, K.; Izoret, L.; and Loukili, A., “Hydration, Shrinkage, and Durability of Ternary Binders Containing Portland Cement, Limestone Filler and Metakaolin,” Construction and Building Materials, V. 183, 2018, pp. 114-126. doi: 10.1016/j.conbuildmat.2018.06.138

56. Badogiannis, E., and Tsivilis, S., “Exploitation of Poor Greek Kaolins: Durability of Metakaolin Concrete,” Cement and Concrete Composites, V. 31, No. 2, 2009, pp. 128-133. doi: 10.1016/j.cemconcomp.2008.11.001

57. Krishnan, S.; Dhoopadahailli, G. R.; and Bishnoi, S., “Why Low-Grade Calcined Clays are Ideal for the Production of Limestone Calcined Clay Cement (LC3),” 3rd International Conference on Calcined Clays for Sustainable Concrete, 2019, pp. 115-120.

58. AASHTO T 358-19, “Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” American Association of State Highway and Transportation Officials, Washington, DC 2019.

59. Nguyen, Q. D.; Khan, M. S. H.; Castel, A.; and Kim, T., “Durability and Microstructure Properties of Low-Carbon Concrete Incorporating Ferronickel Slag Sand and Fly Ash,” Journal of Materials in Civil Engineering, ASCE, V. 31, No. 8, 2019, p. 04019152. doi: 10.1061/(ASCE)MT.1943-5533.0002797

60. Barneyback, R. S. Jr., and Diamond, S., “Expression and Analysis of Pore Fluids from Hardened Cement Pastes and Mortars,” Cement and Concrete Research, V. 11, No. 2, 1981, pp. 279-285. doi: 10.1016/0008-8846(81)90069-7

61. Zhang, J., and Scherer, G. W., “Comparison of Methods for Arresting Hydration of Cement,” Cement and Concrete Research, V. 41, No. 10, 2011, pp. 1024-1036. doi: 10.1016/j.cemconres.2011.06.003

62. Noushini, A., and Castel, A., “Performance-Based Criteria to Assess the Suitability of Geopolymer Concrete in Marine Environments Using Modified ASTM C1202 and ASTM C1556 Methods,” Materials and Structures, V. 51, No. 6, 2018, p. 146 doi: 10.1617/s11527-018-1267-z

63. Shi, Z. G.; Lothenbach, B.; Geiker, M. R.; Kaufmann, J.; Leemann, A.; Ferreiro, S.; and Skibsted, J., “Experimental Studies and Thermodynamic Modeling of the Carbonation of Portland Cement, Metakaolin and Limestone Mortars,” Cement and Concrete Research, V. 88, 2016, pp. 60-72. doi: 10.1016/j.cemconres.2016.06.006

64. Andrade, C.; Sanjuan, M. A.; Recuero, A.; and Rio, O., “Calculation of Chloride Diffusivity in Concrete from Migration Experiments, in Non-Steady-State Conditions,” Cement and Concrete Research, V. 24, No. 7, 1994, pp. 1214-1228. doi: 10.1016/0008-8846(94)90106-6

65. Polder, R. B., “Test Methods for On Site Measurement of Resistivity of Concrete — A RILEM TC-154 Technical Recommendation,” Construction and Building Materials, V. 15, No. 2-3, 2001, pp. 125-131. doi: 10.1016/S0950-0618(00)00061-1

66. Hall, C., “Water Sorptivity of Mortars and Concretes - A Review,” Magazine of Concrete Research, V. 41, No. 147, 1989, pp. 51-61. doi: 10.1680/macr.1989.41.147.51

67. Benli, A.; Karatas, M.; and Bakir, Y., “An Experimental Study of Different Curing Regimes on the Mechanical Properties and Sorptivity of Self-Compacting Mortars with Fly Ash and Silica Fume,” Construction and Building Materials, V. 144, 2017, pp. 552-562. doi: 10.1016/j.conbuildmat.2017.03.228

68. Martys, N. S., and Ferraris, C. F., “Capillary Transport in Mortars and Concrete,” Cement and Concrete Research, V. 27, No. 5, 1997, pp. 747-760. doi: 10.1016/S0008-8846(97)00052-5

69. Garboczi, E. J., “Permeability, Diffusivity, and Microstructural Parameters - A Critical Review,” Cement and Concrete Research, V. 20, No. 4, 1990, pp. 591-601. doi: 10.1016/0008-8846(90)90101-3

70. Shi, C., “Effect of Mixing Proportions of Concrete on its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or AASHTO T277) Results,” Cement and Concrete Research, V. 34, No. 3, 2004, pp. 537-545. doi: 10.1016/j.cemconres.2003.09.007

71. Min-Hong, Z., and Odd, E. G., “Permeability of High-Strength Lightweight Concrete,” ACI Materials Journal, V. 88, No. 5, Sept.-Oct. 1991, pp. 463-469.

72. Shi, C.; Stegemann, J. A.; and Caldwell, R. J., “Effect of Supplementary Cementing Materials on the Specific Conductivity of Pore Solution and its Implications on the Rapid Chloride Permeability Test (AASHTO T277 and ASTM C1202) Results,” ACI Materials Journal, V. 95, No. 4, July-Aug. 1998, pp. 389-394.

73. Pfeifer, D. W.; McDonald, D. B.; and Krauss, P. D., “The Rapid Chloride Permeability Test and its Correlation to the 90-Day Chloride Ponding Test,” PCI Journal, V. 39, No. 1, 1994, pp. 38-47. doi: 10.15554/pcij.01011994.38.47

74. Shane, J.; Aldea, C.; Bouxsein, N.; Mason, T.; Jennings, H.; and Shah, S., “Microstructural and Pore Solution Changes Induced by the Rapid Chloride Permeability Test Measured by Impedance Spectroscopy,” Concrete Science and Engineering, V. 1, No. 2, 1999, pp. 110-119.

75. Maraghechi, H.; Avet, F.; and Scrivener, K., Chloride Transport Behavior of LC3 Binders, Springer Netherlands, Dordrecht, the Netherlands, 2018, pp. 306-309.

76. Loser, R.; Lothenbach, B.; Leemann, A.; and Tuchschmid, M., “Chloride Resistance of Concrete and its Binding Capacity - Comparison between Experimental Results and Thermodynamic Modeling,” Cement and Concrete Composites, V. 32, No. 1, 2010, pp. 34-42. doi: 10.1016/j.cemconcomp.2009.08.001

77. Bagheri, A. R., and Zanganeh, H., “Comparison of Rapid Tests for Evaluation of Chloride Resistance of Concretes with Supplementary Cementitious Materials,” Journal of Materials in Civil Engineering, ASCE, V. 24, No. 9, 2012, pp. 1175-1182. doi: 10.1061/(ASCE)MT.1943-5533.0000485

78. Julio-Betancourt, G. A., and Hooton, R. D., “Study of the Joule Effect on Rapid Chloride Permeability Values and Evaluation of Related Electrical Properties of Concretes,” Cement and Concrete Research, V. 34, No. 6, 2004, pp. 1007-1015. doi: 10.1016/j.cemconres.2003.11.012

79. Buenfeld, N. R.; Glass, G. K.; Hassanein, A. M.; and Zhang, J. Z., “Chloride Transport in Concrete Subjected to Electric Field,” Journal of Materials in Civil Engineering, ASCE, V. 10, No. 4, 1998, pp. 220-228. doi: 10.1061/(ASCE)0899-1561(1998)10:4(220)

80. Andrade, C., “Calculation of Chloride Diffusion-Coefficients in Concrete from Ionic Migration Measurements,” Cement and Concrete Research, V. 23, No. 3, 1993, pp. 724-742. doi: 10.1016/0008-8846(93)90023-3

81. Jones, M. R.; Macphee, D. E.; Chudek, J. A.; Hunter, G.; Lannegrand, R.; Talero, R.; and Scrimgeour, S. N., “Studies Using 27Al MAS NMR of AFm and AFt Phases and the Formation of Friedel’s Salt,” Cement and Concrete Research, V. 33, No. 2, 2003, pp. 177-182. doi: 10.1016/S0008-8846(02)00901-8

82. Yue, Y. F.; Wang, J. J.; Basheer, P. A. M.; and Bai, Y., “Raman Spectroscopic Investigation of Friedel’s Salt,” Cement and Concrete Composites, V. 86, 2018, pp. 306-314. doi: 10.1016/j.cemconcomp.2017.11.023

83. Paul, G.; Boccaleri, E.; Buzzi, L.; Canonico, F.; and Gastaldi, D., “Friedel’s Salt Formation in Sulfoaluminate Cements: A Combined XRD and 27 Al MAS NMR Study,” Cement and Concrete Research, V. 67, 2015, pp. 93-102. doi: 10.1016/j.cemconres.2014.08.004


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer