Title:
Effect of Steel-Reinforced Grout Confinement on Concrete Square and Cylindrical Columns
Author(s):
S. K. Shahreza, G. Baietti, G. Quartarone, M. Santandrea, and C. Carloni
Publication:
Structural Journal
Volume:
117
Issue:
5
Appears on pages(s):
97-108
Keywords:
compressive strength; confinement; energy absorption; size effect; steel-reinforced grout
DOI:
10.14359/51725842
Date:
9/1/2020
Abstract:
This paper presents an investigation on the compressive behavior of plain concrete columns confined with steel-reinforced grout (SRG) composites. The test parameters include size and crosssectional shape (square or circular) of the columns, and number of layers (one or two) and density (low or medium density) of the steel fiber sheet. Out of 46 specimens herein presented, 33 were confined with SRG, and the remaining 13 columns were left unconfined for comparison. The results indicate that application of SRG composites improves both the average strength and the ultimate strain of confined specimens with respect to the control (unconfined) columns. The best performance in terms of strength and ultimate strain increase with respect to the control columns is obtained for small square and cylindrical columns confined with two layers of low-density fiber sheet.
Related References:
1. Abdelrahman, K., and El-Hacha, R., “Behavior of Large-Scale Concrete Columns Wrapped with CFRP and SFRP Sheets,” Journal of Composites for Construction, ASCE, V. 16, No. 4, 2012, pp. 430-439. doi: 10.1061/(ASCE)CC.1943-5614.0000278
2. Abbasnia, R.; Ahmadi, R.; and Ziaadiny, H., “Effect of Confinement Level, Aspect Ratio and Concrete Strength on the Cyclic Stress–Strain Behavior of FRP-Confined Concrete Prisms,” Composites. Part B, Engineering, V. 43, No. 2, 2012, pp. 825-831. doi: 10.1016/j.compositesb.2011.11.008
3. Campione, G., and Miraglia, N., “Strength and Strain Capacities of Concrete Compression Members Reinforced with FRP,” Cement and Concrete Composites, V. 25, No. 1, 2003, pp. 31-41. doi: 10.1016/S0958-9465(01)00048-8
4. Pessiki, S.; Harries, K. A.; Kestner, J. T.; Sause, R.; and Ricles, J. M., “Axial Behavior of Reinforced Concrete Columns Confined with FRP Jackets,” Journal of Composites for Construction, ASCE, V. 5, No. 4, 2001, pp. 237-245. doi: 10.1061/(ASCE)1090-0268(2001)5:4(237)
5. Triantafillou, T. C., “Composites: A New Possibility for the Shear Strengthening of Concrete, Masonry and Wood,” Composites Science and Technology, V. 58, No. 8, 1998, pp. 1285-1295. doi: 10.1016/S0266-3538(98)00017-7
6. Triantafillou, T., and Papanicolaou, C. C. G., “Innovative Applications of Textile-Based Composites in Strengthening and Seismic Retrofitting as well as in the Prefabrication of New Structures,” Advanced Materials Research, V. 639-640, 2013, pp. 26-41. doi: 10.4028/www.scientific.net/AMR.639-640.26
7. Trapko, T., “Behaviour of Fibre Reinforced Cementitious Matrix Strengthened Concrete Columns under Eccentric Compression Loading,” Materials & Design, V. 54, 2014, pp. 947-954. doi: 10.1016/j.matdes.2013.09.008
8. De Caso y Basalo, F. J.; Matta, F.; and Nanni, A., “Fiber Reinforced Cement-Based Composite System for Concrete Confinement,” Construction and Building Materials, V. 32, 2012, pp. 55-65. doi: 10.1016/j.conbuildmat.2010.12.063
9. Trapko, T., “Fibre Reinforced Cementitious Matrix Confined Concrete Elements,” Materials & Design, V. 44, 2013, pp. 382-391. doi: 10.1016/j.matdes.2012.08.024
10. Trapko, T., “Effect of Eccentric Compression Loading on the Strains of FRCM Confined Concrete Columns,” Construction and Building Materials, V. 61, 2014, pp. 97-105. doi: 10.1016/j.conbuildmat.2014.03.007
11. Raoof, S. M.; Koutas, L. N.; and Bournas, D. A., “Textile-Reinforced Mortar (TRM) versus Fibre-Reinforced Polymers (FRP) in Flexural Strengthening of RC Beams,” Construction and Building Materials, V. 151, 2017, pp. 279-291. doi: 10.1016/j.conbuildmat.2017.05.023
12. Colajanni, P.; Fossetti, M.; and Macaluso, G., “Effects of Confinement Level, Cross-Section Shape and Corner Radius on the Cyclic Behavior of CFRCM Confined Concrete Columns,” Construction and Building Materials, V. 55, 2014, pp. 379-389. doi: 10.1016/j.conbuildmat.2014.01.035
13. Colajanni, P.; De Domenico, F.; Recupero, A.; and Spinella, N., “Concrete Columns Confined with Fibre Reinforced Cementitious Mortars: Experimentation and Modelling,” Construction and Building Materials, V. 52, 2014, pp. 375-384. doi: 10.1016/j.conbuildmat.2013.11.048
14. Sneed, L. H.; Ravazdezh, F.; Santandrea, M.; Imohamed, I. A.; and Carloni, C., “A Study of the Compressive Behavior of Concrete Columns Confined with SRP Jackets Using Digital Image Analysis,” Composite Structures, V. 179, 2017, pp. 195-207. doi: 10.1016/j.compstruct.2017.07.047
15. El-Hacha, R., and Abdelrahman, K., “Slenderness Effect of Circular Concrete Specimens Confined with SFRP Sheets,” Composites. Part B, Engineering, V. 44, No. 1, 2013, pp. 152-166. doi: 10.1016/j.compositesb.2012.06.014
16. El-Hacha, R., and Mashrik, M. A., “Effect of SFRP Confinement on Circular and Square Concrete Columns,” Engineering Structures, V. 36, 2012, pp. 379-393. doi: 10.1016/j.engstruct.2011.12.006
17. Napoli, A., and Realfonzo, R., “Compressive Behavior of Concrete Confined by SRP Wraps,” Construction and Building Materials, V. 127, 2016, pp. 993-1008. doi: 10.1016/j.conbuildmat.2016.01.055
18. Sneed, L. H.; Carloni, C.; Baietti, G.; and Fraioli, G., “Confinement of Clay Masonry Columns with SRG,” Key Engineering Materials, V. 747, 2017, pp. 350-357. doi: 10.4028/www.scientific.net/KEM.747.350
19. Sneed, L. H.; Carloni, C.; Fraioli, G.; and Baietti, G., “Confinement of Brick Masonry Columns with SRG Jackets,” Composites with Inorganic Matrix for Repair of Concrete and Masonry Structures, SP-324, American Concrete Institute, Farmington Hills, MI, 2018, 10 pp.
20. Thermou, G. E., and Hajirasouliha, I., “Compressive Behaviour of Concrete Columns Confined with Steel-Reinforced Grout Jackets,” Composites. Part B, Engineering, V. 138, 2018, pp. 222-231. doi: 10.1016/j.compositesb.2017.11.041
21. Carloni, C.; Santandrea, M.; Imohamed, I. A. O.; and Sneed, L. H., “Confinement of Concrete Columns with SRG,” Composites with Inorganic Matrix for Repair of Concrete and Masonry Structures, SP-324, G. de Felice, L. H. Sneed, and A. Nanni, eds., American Concrete Institute, Farmington Hills, MI, 2018, 12 pp.
22. Thermou, G. E.; Katakalos, K.; and Manos, G., “Concrete Confinement with Steel-Reinforced Grout Jackets,” Materials and Structures, V. 48, No. 5, 2015, pp. 1355-1376. doi: 10.1617/s11527-013-0239-6
23. Thermou, G. E.; Katakalos, K.; and Manos, G., “Influence of the Cross Section Shape on the Behaviour of SRG-Confined Prismatic Concrete Specimens,” Materials and Structures, V. 49, No. 3, 2015, pp. 869-887. doi: 10.1617/s11527-015-0545-2
24. Carloni, C.; Santandrea, M.; and Baietti, G., “Influence of the Width of the Specimen on the Fracture Response of Concrete Notched Beams,” Engineering Fracture Mechanics, 2018, doi:In press.10.1016/j.engfracmech.2018.04.045
25. EN 12390-3, “Testing Hardened Concrete – Part 3: Compressive Strength of Test Specimens,” European Committee for Standardization, Brussels, Belgium, 2009.
26. EN 12390-6, “Testing Hardened Concrete – Part 6: Tensile Splitting Strength of Test Specimens,” European Committee for Standardization, Brussels, Belgium, 2009.
27. EN 1992-1-1, “Eurocode 2 - Design of Concrete Structures. Part 1-1: General Rules and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 1992.
28. BS 1881-121, “Testing Concrete. Method for Determination of the Static Modulus of Elasticity of Concrete in Compression,” British Standards Institution, London, UK, 1983.
29. Kerakoll, S. A., http://www.kerakoll.com. (last accessed July 27, 2020)
30. Santandrea, M.; Focacci, F.; Mazzotti, C.; Ubertini, F.; and Carloni, C., “Determination of the Interfacial Cohesive Material Law for SRG Composites Bonded to a Masonry Substrate,” Engineering Failure Analysis, V. 111, 2020.
31. Ascione, F.; Lamberti, M.; Napoli, A.; and Realfonzo, R., “SRP/SRG Strips Bonded to Concrete Substrate: Experimental Characterization,” Durability and Sustainability of Concrete Structures (DSCS-2018), SP-326, V. Falikman, R. Realfonzo, L. Coppola, P. Hàjek, and P. Riva, eds., American Concrete Institute, Farmington Hills, MI, 2018, 10 pp.
32. Thermou, G. E.; Katakalos, K.; and Manos, G., “Experimental Investigation of Substandard RC Columns Confined with SRG Jackets under Compression,” Composite Structures, V. 184, 2018, pp. 56-65. doi: 10.1016/j.compstruct.2017.09.082
33. Bažant, Z., and Planas, J., Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton, FL, 1997.
34. Santandrea, M.; Imohamed, I.; Jahangir, H.; Carloni, C.; Mazzotti, C.; De Miranda, S.; Ubertini, F.; and Casadei, P., “An Investigation of the Debonding Mechanism in Steel FRP- and FRCM-Concrete Joints,” 4th Workshop on the New Boundaries of Structural Concrete, Anacapri, Italy 2016.