Influential Parameters in Rheology of Alkali-Activated Binders

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Influential Parameters in Rheology of Alkali-Activated Binders

Author(s): Aparna Sai Surya Sree Nedunuri and Salman Muhammad

Publication: Materials Journal

Volume: 117

Issue: 3

Appears on pages(s): 75-85

Keywords: alkali-activated binders; apparent viscosity; mini-slump; oxide composition; solid content yield stress

DOI: 10.14359/51724593

Date: 5/1/2020

Abstract:
The production of ordinary Portland cement (OPC) contributes enormously to global anthropogenic CO2 emissions and alkali-activated binders are one of the potential alternatives to OPC. To use these materials as a replacement of OPC-based binders, they need to be engineered to overcome the drawbacks, one of which is the rapid setting that leads to the reduced workable time. In this study, an attempt has been made to investigate the dependence of rheological parameters—namely, yield stress, apparent viscosity, and spread diameter (mini-slump) of alkali-activated slag and fly ash binders—on the oxide composition of the precursor, solid content, molar modulus, and activator dosage. It has been observed that the calcium oxide content plays a major role in the evolution of rheological parameters. Results showed that the yield stress and apparent viscosity were also influenced by molar modulus, activator dosage, and solid content.

Related References:

1. “Indian Minerals Yearbook 2017 (Part- III: Minerals Reviews),” Indian Bureau of Mines, Nagpur, India, 2018.

2. Olivier, J. G. J.; Muntean, G. J. M. M.; and Peters, J. A. H. W., “Trends in Global CO2 Emissions 2016 Report,” PBL Publishers, The Hauge, the Netehrlands, 2016, 86 pp.

3. Provis, J. L., and van Deventer, J. S. J., Alkali Activated Materials, Springer, Dordrecht, the Netherlands, 2014, 388 pp.

4. Juenger, M. C. G.; Winnefeld, F.; Provis, J. L.; and Ideker, J. H., “Advances in Alternative Cementitious Binders,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1232-1243. doi: 10.1016/j.cemconres.2010.11.012

5. Provis, J. L., and Bernal, S., “Geopolymers and Related Alkali-Activated Materials,” Annual Review of Materials Research, V. 44, No. 1, 2014, pp. 299-327. doi: 10.1146/annurev-matsci-070813-113515

6. Provis, J. L., “Geopolymers and Other Alkali Activated Materials: Why, How, and What?,” Materials and Structures, V. 47, No. 1-2, 2014, pp. 11-25. doi: 10.1617/s11527-013-0211-5

7. Provis, J. L.; Palomo, A.; and Shi, C., “Advances in Understanding Alkali-Activated Materials,” Cement and Concrete Research, V. 78, 2015, pp. 110-125. doi: 10.1016/j.cemconres.2015.04.013

8. ASTM C125-18, “Standard Terminology Relating to Concrete and Concrete Aggregates,” ASTM International, West Conshohocken, PA, 2018, 8 pp.

9. Tattersall, G. H., and Banfill, P. F. G., The Rheology of Fresh Concrete, Pitman Publishing Inc., Marshfield, MA, 1983.

10. Collins, F., and Sanjayan, J. G., “Early Age Strength and Workability of Slag Pastes Activated by NaOH and Na2CO3,” Cement and Concrete Research, V. 28, No. 5, 1998, pp. 655-664. doi: 10.1016/S0008-8846(98)00025-8

11. Collins, F. G., and Sanjayan, J. G., “Workability and Mechanical Properties of Alkali Activated Slag Concrete,” Cement and Concrete Research, V. 29, No. 3, Mar. 1999, pp. 455-458.

12. Fernández-Jiménez, A., and Puertas, F., “Setting of Alkali-Activated Slag Cement. Influence of Activator Nature,” Advances in Cement Research, V. 13, No. 3, 2001, pp. 115-121. doi: 10.1680/adcr.2001.13.3.115

13. Chang, J. J., “A Study on the Setting Characteristics of Sodium Silicate-Activated Slag Pastes,” Cement and Concrete Research, V. 33, No. 7, 2003, pp. 1005-1011. doi: 10.1016/S0008-8846(02)01096-7

14. Palacios, M.; Banfill, P. F. G.; and Puertas, F., “Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture,” ACI Materials Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 140-148.

15. Puertas, F.; Varga, C.; and Alonso, M. M., “Rheology of Alkali-Activated Slag Pastes. Effect of the Nature and Concentration of the Activating Solution,” Cement and Concrete Composites, V. 53, 2014, pp. 279-288. doi: 10.1016/j.cemconcomp.2014.07.012

16. Kashani, A.; Provis, J. L.; Qiao, G. G.; and van Deventer, J. S. J., “The Interrelationship between Surface Chemistry and Rheology in Alkali Activated Slag Paste,” Construction and Building Materials, V. 65, 2014, pp. 583-591. doi: 10.1016/j.conbuildmat.2014.04.127

17. Palomo, A.; Banfill, P. F. G.; and Fernández-Jiménez, A., “Properties of Alkali-Activated Fly Ashes Determined from Rheological Measurements,” Advances in Cement Research, V. 17, No. 4, 2005, pp. 143-151. doi: 10.1680/adcr.2005.17.4.143

18. Laskar, I., and Bhattacharjee, R., “Rheology of Fly-Ash Based Geopolymer Concrete,” ACI Materials Journal, V. 108, No. 5, Sept.-Oct. 2012, pp. 536-542.

19. Laskar, I., and Bhattacharjee, R., “Effect of Plasticizer and Superplasticizer on Rheology of Fly-Ash Based Geopolymer Concrete,” ACI Materials Journal, V. 110, No. 5, Sept.-Oct. 2014, pp. 513-518.

20. Criado, M.; Palomo, A.; Fernández-Jiménez, A.; and Banfill, P. F. G., “Alkali Activated Fly Ash: Effect of Admixtures on Paste Rheology,” Rheologica Acta, V. 48, No. 4, 2009, pp. 447-455. doi: 10.1007/s00397-008-0345-5

21. Lee, N. K., and Lee, H. K., “Setting and Mechanical Properties of Alkali-Activated Fly Ash/Slag Concrete Manufactured at Room Temperature,” Construction and Building Materials, V. 47, 2013, pp. 1201-1209. doi: 10.1016/j.conbuildmat.2013.05.107

22. Jang, J. G.; Lee, N. K.; and Lee, H. K., “Fresh and Hardened Properties of Alkali-Activated Fly Ash/Slag Pastes with Superplasticizers,” Construction and Building Materials, V. 50, Jan. 2014, pp. 169-176. doi: 10.1016/j.conbuildmat.2013.09.048

23. EN 1097-6, “Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption,” European Committee for Standardization, Brussels, Belgium, 2013.

24. ASTM C204-18, “Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability,” ASTM International, West Conshohocken, PA, 2018, 11 pp.

25. Snellings, R.; Machiels, L.; Mertens, G.; and Elsen, J., “Rietveld Refinement Strategy for Quantitative Phase Analysis of Partially Amorphous Zeolitized Tuffaceous Rocks,” Geologica Belgica, V. 13, No. 3, 2010, pp. 183-196.

26. Snellings, R.; Salze, A.; and Scrivener, K. L., “Use of X-Ray Diffraction to Quantify Amorphous Supplementary Cementitious Materials in Anhydrous and Hydrated Blended Cements,” Cement and Concrete Research, V. 64, 2014, pp. 89-98. doi: 10.1016/j.cemconres.2014.06.011

27. Snellings, R.; Bazzoni, A.; and Scrivener, K., “The Existence of Amorphous Phase in Portland Cements: Physical Factors Affecting Rietveld Quantitative Phase Analysis,” Cement and Concrete Research, V. 59, 2014, pp. 139-146. doi: 10.1016/j.cemconres.2014.03.002

28. Kantro, D. L., “Influence of Water-Reducing Admixtures on Properties of Cement Paste-A Miniature Slump Test,” Cement, Concrete, and Aggregates, V. 2, No. 2, 1980, pp. 95-102. doi: 10.1520/CCA10190J

29. Provis, J. L.; Duxson, P.; and Van Deventer, J. S. J., “The Role of Particle Technology in Developing Sustainable Construction Materials,” Advanced Powder Technology, V. 21, No. 1, 2010, pp. 2-7. doi: 10.1016/j.apt.2009.10.006

30. ASTM C618-17a, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use,” ASTM International, West Conshohocken, PA, 2017, 5 pp.

31. Taylor, H. F. W., Cement Chemistry, second edition, Thomas Telford Publishing, London, UK, 1997.

32. Granizo, M. L.; Alonso, S.; Blanco-varela, M. T.; and Palomo, A., “Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction,” Journal of the American Ceramic Society, V. 85, No. 1, 2002, pp. 225-231. doi: 10.1111/j.1151-2916.2002.tb00070.x

33. Struble, L., and Sun, G. K., “Viscosity of Portland Cement Paste as a Function Of Concentration,” Advanced Cement Based Materials, V. 2, No. 2, 1995, pp. 62-69. doi: 10.1016/1065-7355(95)90026-8

34. Vail, G. J., and Wills, J., Soluble Silicates—Their Properties and Uses, Reinhold Publishing Corporation, New York, 1952.

35. Franks, G. V., “Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional Attraction,” Journal of Colloid and Interface Science, V. 249, No. 1, 2002, pp. 44-51. doi: 10.1006/jcis.2002.8250

36. Catalfamo, P.; Di Pasquale, S.; Corigliano, F.; and Mavilia, L., “Influence of the Calcium Content on the Coal Fly Ash Features in Some Innovative Applications,” Resources, Conservation and Recycling, V. 20, No. 2, 1997, pp. 119-125. doi: 10.1016/S0921-3449(97)00013-X

37. Yip, C. K., and van Deventer, J. S. J., “Microanalysis of Calcium Silicate Hydrate Gel Formed within a Geopolymeric Binder,” Journal of Materials Science, V. 38, No. 18, 2003, pp. 3851-3860. doi: 10.1023/A:1025904905176

38. Weldes, H. H., and Lange, K. R., “Properties of Soluble Silicates,” Industrial & Engineering Chemistry, V. 61, No. 4, 1969, pp. 29-44. doi: 10.1021/ie50712a008

39. Sadanaga, R.; Tokonami, M.; and Takéuchi, Y., “The Structure of Mullite, 2Al2O3.SiO2, and Relationship with the Structures of Sillimanite and Andalusite,” Acta Crystallographica, V. 15, No. 1, 1962, pp. 65-68. doi: 10.1107/S0365110X62000134

40. d’Amour, H.; Denner, W.; and Schulz, H., “Structure Determination of Alpha-Quartz up to 68*108 Pa,” Acta Crystallographica, V. 35, No. 3, 1979, pp. 550-555. doi: 10.1107/S056774087900412X

41. Blake, R. L.; Hessevick, R. E.; Zoltawi, T.; and Finger, L. W., “Refinement of the Hematite Structure,” The American Mineralogist, V. 51, 1966, pp. 123-129.

42. Merlini, M.; Gemmi, M.; Cruciani, G.; and Artioli, G., “High-Temperature Behaviour of Melilite: In Situ X-Ray Diffraction Study of Gehlenite--Åkermanite--Na Melilite Solid Solution,” Physics and Chemistry of Minerals, V. 35, No. 3, 2008, pp. 147-155. doi: 10.1007/s00269-007-0206-2


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer