Effect of Recycled Aggregate on Performance of Granular Skeleton

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Effect of Recycled Aggregate on Performance of Granular Skeleton

Author(s): B. Cantero Chaparro, I. F. Sáez del Bosque, A. Matías Sánchez, M. I. Sánchez de Rojas, and C. Medina

Publication: Materials Journal

Volume: 117

Issue: 2

Appears on pages(s): 113-124

Keywords: construction and demolition waste (C&DW); optimal percentage; performance; recycled concrete aggregate (RCA); recycled mixed aggregate (RMA)

DOI: 10.14359/51720299

Date: 3/1/2020

Abstract:
A full understanding of the characteristics of the granular skeleton comprising different percentages of conventional and recycled aggregates is requisite to the reusability of construction and demolition waste. This study analyzed the effect of partially replacing natural aggregate with recycled concrete (RCA) and mixed (RMA) aggregates on the performance of granular mixtures. Each type of aggregate was characterized physically, chemically, mineralogically, and mechanically, and the physical and mechanical properties of the mixtures were assessed. Correlations were established to predict the optimal mixture proportions. The recycled aggregates analyzed met most requirements laid down in the national legislation and complied with international recommendations. The mixtures exhibited a close linear correlation between the properties analyzed and the recycled aggregate replacement ratios. For concrete, the upper limit was 75% for RCA and RMA, and for the base and intermediate layers in medium/low traffic roads, 75% for RCA and 35% for RMA.

Related References:

1. European Commission, “Construction and Demolition Waste Report,” 2019 http://ec.europa.eu/environment/waste/construction_demolition.htm.

2. Tam, V. W. Y.; Soomro, M.; and Evangelista, A. C. J., “A Review of Recycled Aggregate in Concrete Applications (2000–2017),” Construction and Building Materials, V. 172, 2018, pp. 272-292. doi: 10.1016/j.conbuildmat.2018.03.240

3. Eurostat, “Eurostat Waste Statistics,” European Commission, 2010, https://ec.europa.eu/eurostat/web/waste/data/main-tables.

4. European Commission, “Closing the Loop – An EU Action Plan for the Circular Economy,” 2015, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0614&from=EN.

5. European Commission, “Circular Economy,” 2017, http://ec.europa.eu/growth/industry/sustainability/circular-economy_en

6. “Directive 2008/98/EC of the European Parliament and of the Council of 19 November, 2008. On Waste and Repealing Certain Directives,” European Parliament, 2008, https://eur-lex.europa.eu/eli/dir/2008/98/oj.

7. OVAM, “Beheersysteem Milieukwaliteit Voor Gerecycleerde Granulaten,” Mechelen, Belgium, http://www.ovam.be/sites/default/files/FILE1322216585747ovhl111125_Beheersysteem_granulaten_dec2010.pdf.

8. Ministerio de Medio Ambiente, “Plan Nacional Integrado de Residuos (PNIR) 2008-2015,” Madrid, Spain, 2009, 44 pp.

9. Department for Environment, Food & Rural Affairs, “Waste Management Plan for England,” London, UK, 2013, https://www.gov.uk/government/publications/waste-management-plan-for-england.

10. Slattery, K., “Global Developments in the Aggregate Industry,” Global Aggregates Information, Network, 2014.

11. Bravo, M.; de Brito, J.; Pontes, J.; and Evangelista, L., “Mechanical Performance of Concrete Made with Aggregates from Construction and Demolition Waste Recycling Plants,” Journal of Cleaner Production, V. 99, 2015, pp. 59-74. doi: 10.1016/j.jclepro.2015.03.012

12. Zega, C. J.; Villagrán-Zaccardi, Y. A.; and Di Maio, A. A., “Effect of Natural Coarse Aggregate Type on the Physical and Mechanical Properties of Recycled Coarse Aggregates,” Materials and Structures, V. 43, No. 1-2, 2010, pp. 195-202. doi: 10.1617/s11527-009-9480-4

13. Etxeberria, M.; Vázquez, E.; Marí, A.; and Barra, M., “Influence of Amount of Recycled Coarse Aggregates and Production Process on Properties of Recycled Aggregate Concrete,” Cement and Concrete Research, V. 37, No. 5, 2007, pp. 735-742. doi: 10.1016/j.cemconres.2007.02.002

14. Medina, C.; Zhu, W.; Howind, T.; Sánchez de Rojas, M. I.; and Frías, M., “Influence of Mixed Recycled Aggregate on the Physical-Mechanical Properties of Recycled Concrete,” Journal of Cleaner Production, V. 68, 2014, pp. 216-225. doi: 10.1016/j.jclepro.2014.01.002

15. Thomas, C.; Setién, J.; and Polanco, J. A., “Structural Recycled Aggregate Concrete Made with Precast Wastes,” Construction and Building Materials, V. 114, 2016, pp. 536-546. doi: 10.1016/j.conbuildmat.2016.03.203

16. Ulloa, V. A.; García-Taengua, E.; Pelufo, M.-J.; Domingo, A.; and Serna, P., “New Views on Effect of Recycled Aggregates on Concrete Compressive Strength,” ACI Materials Journal, V. 110, No. 6, Nov.-Dec. 2013, pp. 687-696.

17. Gomes, M., and de Brito, J., “Structural Concrete with Incorporation of Coarse Recycled Concrete and Ceramic Aggregates: Durability Performance,” Materials and Structures, V. 42, No. 5, 2009, pp. 663-675. doi: 10.1617/s11527-008-9411-9

18. Sadati, S., and Khayat, K. H., “Can Concrete Containing High-Volume Recycled Concrete Aggregate Be Durable?” ACI Materials Journal, V. 115, No. 3, 2018, pp. 471-480. doi: 10.14359/51702190

19. Arulrajah, A.; Disfani, M. M.; Horpibulsuk, S.; Suksiripattanapong, C.; and Prongmanee, N., “Physical Properties and Shear Strength Responses of Recycled Construction and Demolition Materials in Unbound Pavement Base/Subbase Applications,” Construction and Building Materials, V. 58, 2014, pp. 245-257. doi: 10.1016/j.conbuildmat.2014.02.025

20. Diagne, M.; Tinjum, J. M.; and Nokkaew, K., “The Effects of Recycled Clay Brick Content on the Engineering Properties, Weathering Durability, and Resilient Modulus of Recycled Concrete Aggregate,” Transportation Geotechnics, V. 3, 2015, pp. 15-23. doi: 10.1016/j.trgeo.2014.12.003

21. Jiménez, J. R.; Agrela, F.; Ayuso, J.; and López, M., “A Comparative Study of Recycled Aggregates from Concrete and Mixed Debris as Material for Unbound Road Sub-Base,” Materiales de Construcción, V. 61, No. 302, 2011, pp. 289-302.

22. Mohammadinia, A.; Arulrajah, A.; Sanjayan, J.; Disfani, M. M.; Bo, M. W.; and Darmawan, S., “Laboratory Evaluation of the Use of Cement-Treated Construction and Demolition Materials in Pavement Base and Subbase Applications,” Journal of Materials in Civil Engineering, ASCE, V. 27, No. 6, 2015, p. 04014186 doi: 10.1061/(ASCE)MT.1943-5533.0001148

23. Mohammadinia, A.; Arulrajah, A.; Sanjayan, J.; Disfani, M. M.; Win Bo, M.; and Darmawan, S., “Stabilization of Demolition Materials for Pavement Base/Subbase Applications Using Fly Ash and Slag Geopolymers: Laboratory Investigation,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 7, 2016, p. 04016033 doi: 10.1061/(ASCE)MT.1943-5533.0001526

24. Herrador, R.; Pérez, P.; Garach, L.; and Ordóñez, J., “Use of Recycled Construction and Demolition Waste Aggregate for Road Course Surfacing,” Journal of Transportation Engineering, ASCE, V. 138, No. 2, 2012, pp. 182-190. doi: 10.1061/(ASCE)TE.1943-5436.0000320

25. Rahman, M. A.; Imteaz, M. A.; Arulrajah, A.; Piratheepan, J.; and Disfani, M. M., “Recycled Construction and Demolition Materials in Permeable Pavement Systems: Geotechnical and Hydraulic Characteristics,” Journal of Cleaner Production, V. 90, 2015, pp. 183-194. doi: 10.1016/j.jclepro.2014.11.042

26. Arulrajah, A.; Piratheepan, J.; Disfani, M. M.; and Bo, M. W., “Geotechnical and Geoenvironmental Properties of Recycled Construction and Demolition Materials in Pavement Subbase Applications,” Journal of Materials in Civil Engineering, ASCE, V. 25, No. 8, 2013, pp. 1077-1088. doi: 10.1061/(ASCE)MT.1943-5533.0000652

27. Arisha, M.; Gabr, A. R.; El-Badawy, S. M.; and Shwally, S. A., “Performance Evaluation of Construction and Demolition Waste Materials for Pavement Construction in Egypt,” Journal of Materials in Civil Engineering, ASCE, V. 30, No. 2, 2018, p. 04017270 doi: 10.1061/(ASCE)MT.1943-5533.0002127

28. Arabani, M.; Moghadas Nejad, F.; and Azarhoosh, A. R., “Laboratory Evaluation of Recycled Waste Concrete into Asphalt Mixtures,” The International Journal of Pavement Engineering, V. 14, No. 6, 2013, pp. 531-539. doi: 10.1080/10298436.2012.747685

29. Gómez-Meijide, B.; Pérez, I.; and Pasandín, A. R., “Recycled Construction and Demolition waste in Cold Asphalt Mixtures: Evolutionary Properties,” Journal of Cleaner Production, V. 112, No. Part 1, 2016, pp. 588-598.

30. Leite, F. D.; Motta, R. D.; Vasconcelos, K. L.; and Bernucci, L., “Laboratory Evaluation of Recycled Construction and Demolition Waste for Pavements,” Construction and Building Materials, V. 25, No. 6, 2011, pp. 2972-2979. doi: 10.1016/j.conbuildmat.2010.11.105

31. Pérez, I.; Pasandin, A. R.; and Medina, L., “Hot Mix Asphalt Using C&D Waste as Coarse Aggregates,” Materials and Design, V. 36, 2012, pp. 840-846. doi: 10.1016/j.matdes.2010.12.058

32. Zhu, J.; Wu, S.; Zhong, J.; and Wang, D., “Investigation of Asphalt Mixture Containing Demolition Waste Obtained from Earthquake-Damaged Buildings,” Construction and Building Materials, V. 29, 2012, pp. 466-475. doi: 10.1016/j.conbuildmat.2011.09.023

33. Zhu, J.; Wu, S.; Zhong, J.; and Wang, D. M., “Classification of Coarse Recycled Aggregate Used in Asphalt Concrete,” Applied Mechanics and Materials, V. 71-78, 2011, pp. 1025-1030.

34. EN 932-1, “Test for General Properties of Aggregates. Part 1: Methods for Sampling,” European Committee for Standardization, Brussels, Belgium, 1997.

35. EN 932-2, “Tests for General Properties of Aggregates. Part 2: Methods for Reducing Laboratory Samples,” European Committee for Standardization, Brussels, Belgium, 1999.

36. EHE-08, “Instrucción Hormigón Estructural. (Spanish Code on Structural Concrete),” Comisión Permanente del Hormigón, Madrid, Spain, 2008.

37. Ministerio de Fomento, “Orden FOM/2523/2014, del 12 de diciembre, por la que se Actualizan Determinados Artículos del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG-3/75), Relativos a Materiales Básicos, a Firmes y Pavimentos, y a Señalización y Balizamiento de Vehículos,” 2015, pp. 584-1096.

38. Barbudo, A.; de Brito, J.; Evangelista, L.; Bravo, M.; and Agrela, F., “Influence of Water-Reducing Admixtures on the Mechanical Performance of Recycled Concrete,” Journal of Cleaner Production, V. 59, 2013, pp. 93-98. doi: 10.1016/j.jclepro.2013.06.022

39. Beltrán, M. G.; Agrela, F.; Barbudo, A.; Ayuso, J.; and Ramírez, A., “Mechanical and Durability Properties of Concretes Manufactured with Biomass Bottom Ash and Recycled Coarse Aggregates,” Construction and Building Materials, V. 72, 2014, pp. 231-238. doi: 10.1016/j.conbuildmat.2014.09.019

40. Ossa, A.; Garcia, J. L.; and Botero, E., “Use of Recycled Construction and Demolition Waste (CDW) Aggregates: A Sustainable Alternative for the Pavement Construction Industry,” Journal of Cleaner Production, V. 135, 2016, pp. 379-386. doi: 10.1016/j.jclepro.2016.06.088

41. Soares, D.; de Brito, J.; Ferreira, J.; and Pacheco, J., “Use of Coarse Recycled Aggregates from Precast Concrete Rejects: Mechanical and Durability Performance,” Construction and Building Materials, V. 71, 2014, pp. 263-272. doi: 10.1016/j.conbuildmat.2014.08.034

42. EN 933-1, “Tests for Geometrical Properties of Aggregates. Part 1: Determination of Particle Size Distribution - Sieving Method,” European Committee for Standardization, Brussels, Belgium, 2012.

43. DIN 4226-100:2002-2, “Aggregates for Concrete and Mortar –Part 100: Recycled Aggregates,” Deutsches Institut für Normung, Berlin, Germany, 2002.

44. LNEC E 471, “Guide for Use of Coarse Recycled Aggregates in Hydraulic Binder Concrete,” National Laboratory of Civil Engineering, Lisbon, Portugal, 2006.

45. BRE Group, “Digest 433. Recycled aggregates,” Watford, UK, 1998, 6 pp.

46. DG/TJ07-008, “Technical Code for Application of Recycled Aggregate Concrete,” Shanghai Construction Standard Society, Shanghai, China, 2007.

47. “Specifications for Concrete with Recycled Aggregates,” Materials and Structures, V. 27, No. 9, 1994, pp. 557-559. doi: 10.1007/BF02473217

48. Angulo, S. C.; Ulsen, C.; John, V. M.; Kahn, H.; and Cincotto, M. A., “Chemical-Mineralogical Characterization of C&D Waste Recycled Aggregates from Sao Paulo, Brazil,” Waste Management (New York, N.Y.), V. 29, No. 2, 2009, pp. 721-730. doi: 10.1016/j.wasman.2008.07.009

49. Vegas, I.; Ibanez, J. A.; Lisbona, A.; Sáez de Cortazar, A.; and Frías, M., “Pre-Normative Research on the Use of Mixed Recycled Aggregates in Unbound Road Sections,” Construction and Building Materials, V. 25, No. 5, 2011, pp. 2674-2682. doi: 10.1016/j.conbuildmat.2010.12.018

50. Rodrigues, F.; Carvalho, M. T.; Evangelista, L.; and de Brito, J., “Physical-Chemical and Mineralogical Characterization of Fine Aggregates from Construction and Demolition Waste Recycling Plants,” Journal of Cleaner Production, V. 52, 2013, pp. 438-445. doi: 10.1016/j.jclepro.2013.02.023

51. EN 12620, “Aggregates for Concrete,” European Committee for Standardization, Brussels, Belgium, 2013.

52. BCSJ, “Proposed Standard for Use of Recycled Aggregate and Recycled Aggregate Concrete,” Committee on Disposal and Reuse of Construction Waste, Building Contractors Society of Japan, 1998. (in Japanese)

53. Martín-Morales, M.; Zamorano, M.; Ruiz-Moyano, A.; and Valverde-Espinosa, I., “Characterization of Recycled Aggregates Construction and Demolition Waste for Concrete Production Following the Spanish Structural Concrete Code EHE-08,” Construction and Building Materials, V. 25, No. 2, 2011, pp. 742-748. doi: 10.1016/j.conbuildmat.2010.07.012

54. CEDEX, “Recomendaciones para el Aprovechamiento de Residuos de Construcción y Demolición y su Utilización como Áridos Reciclados en la Fabricación de Hormigones Estructurales y no Estructurales.,” 2013.

55. Özalp, F.; Yilmaz, H. D.; Kara, M.; Kaya, Ö.; and Şahin, A., “Effects of Recycled Aggregates from Construction and Demolition Wastes on Mechanical and Permeability Properties of Paving Stone, Kerb and Concrete Pipes,” Construction and Building Materials, V. 110, 2016, pp. 17-23. doi: 10.1016/j.conbuildmat.2016.01.030

56. NBR-15, 116, “Recycled Aggregate of Solid Residue of Building Constructions – Requirements and Methodologies,” Brazilian Association for Technical Standards, Rio de Janeiro, Brazil, 2005.

57. EN 933-8, “Tests for Geometrical Properties of Aggregates. Part 8: Assessment of Fines – Sand Equivalent Test,” European Committee for Standardization, Brussels, Belgium, 2000.

58. EN 933-9, “Tests for Geometrical Properties of Aggregates. Part 9: Assessment of Fines – Methylene Blue Test,” European Committee for Standardization, Brussels, Belgium, 2000.

59. EN 1097-6, “Tests for Mechanical and Physical Properties of Aggregates. Part 6: Determination of Particle Density and Water Absorption,” European Committee for Standardization, Brussels, Belgium, 2014.

60. EN 1097-2, “Tests for Mechanical and Physical Properties of Aggregates. Part 2: Methods for the Determination of Resistance to Fragmentation,” European Committee for Standardization, Brussels, Belgium, 2010.

61. EN 933-3, “Tests for Geometrical Properties of Aggregates. Part 3: Determination of Particle Shape – Flakiness Index,” European Committee for Standardization, Brussels, Belgium, 2012.

62. NLT-370/96, “Degradación Granulométrica de Materiales Granulares Durante su Compactación,” 1996.

63. EN 933-5, “Test for Geometrical Properties of Aggregates. Part 5: Determination of Percentage of Crushed and Broken Surfaces in Coarse Aggregate Particles,” European Committee for Standardization, Brussels, Belgium, 1999.

64. EN 1367-2, “Tests for Thermal and Weathering Properties of Aggregates. Part 2: Magnesium Sulfate Test,” European Committee for Standardization, Brussels, Belgium, 2010.

65. EN 1744-1, “Tests for Chemical Properties of Aggregates. Part 1: Chemical Analysis,” European Committee for Standardization, Brussels, Belgium, 2010.

66. Kraemer, C.; Pardillo, J. M.; Rocci, S.; Romana, M. G.; Sánchez Blanco, V.; and del Val, M. A., Ingeniería de Carreteras, Volumen 2, McGraw Hill, Madrid, Spain, 2009, 586 pp.

67. Wu, S.; Zhong, J.; Zhu, J.; and Wang, D., “Influence of Demolition Waste Used as Recycled Aggregate on Performance of Asphalt Mixture,” Road Materials and Pavement Design, V. 14, No. 3, 2013, pp. 679-688. doi: 10.1080/14680629.2013.779304

68. Vyncke, J., and Rousseau, E., “Recycling of Construction and Demolition Waste in Belgium: Actual Situation and Future Evolution,” Demolition and Reuse of Concrete and Masonry: Proceedings of the Third International RILEM Symposium, Taylor & Francis, London, UK, 1994, pp. 57-69.

69. Silva, R. V.; de Brito, J.; and Dhir, R. K., “Properties and Composition of Recycled Aggregates from Construction and Demolition Waste Suitable for Concrete Production,” Construction and Building Materials, V. 65, 2014, pp. 201-217. doi: 10.1016/j.conbuildmat.2014.04.117

70. Mills-Beale, J., and You, Z., “The Mechanical Properties of Asphalt Mixtures with Recycled Concrete Aggregates,” Construction and Building Materials, V. 24, No. 3, 2010, pp. 230-235. doi: 10.1016/j.conbuildmat.2009.08.046

71. Agrela, F.; Sanchez de Juan, M.; Ayuso, J.; Geraldes, V. L.; and Jiménez, J. R., “Limiting Properties in the Characterisation of Mixed Recycled Aggregates for Use in the Manufacture of Concrete,” Construction and Building Materials, V. 25, No. 10, 2011, pp. 3950-3955. doi: 10.1016/j.conbuildmat.2011.04.027

72. JIS A 5022, “Recycled Aggregate for Concrete – Class M,” Japanese Standards Association. Tokyo, Japan, 2006.

73. Gonzalez-Taboada, I.; Gonzalez-Fonteboa, B.; Martinez-Abella, F.; and Carro-López, D., “Study of Recycled Concrete Aggregate Quality and its Relationship with Recycled Concrete Compressive Strength Using Database Analysis,” Materiales De Construcción, V. 66, No. 323, 2016, 18 pp.

74. Barbudo, A.; Agrela, F.; Ayuso, J.; Jiménez, J. R.; and Poon, C. S., “Statistical Analysis of Recycled Aggregates Derived from Different Sources for Sub-Base Applications,” Construction and Building Materials, V. 28, No. 1, 2012, pp. 129-138. doi: 10.1016/j.conbuildmat.2011.07.035

75. Medina, C.; Zhu, W.; Howind, T.; Frías, M.; and Sánchez de Rojas, M. I., “Effect of the Constituents (Asphalt, Clay Materials, Floating Particles and Fines) of Construction and Demolition Waste on the Properties of Recycled Concretes,” Construction and Building Materials, V. 79, 2015, pp. 22-33. doi: 10.1016/j.conbuildmat.2014.12.070

76. de Juan, M. S., and Gutiérrez, P. A., “Study on the Influence of Attached Mortar Content on the Properties of Recycled Concrete Aggregate,” Construction and Building Materials, V. 23, No. 2, 2009, pp. 872-877. doi: 10.1016/j.conbuildmat.2008.04.012

77. Adams, M. P., “Alkali-Silicia Reaction in Concrete Containing Recycled Concrete Aggregates,” master's thesis, Oregon State University, Corvallis, OR, 2012.

78. Bhusal, S.; Li, X.; and Wen, H., “Evaluation of Effects of Recycled Concrete Aggregate on Volumetrics of Hot-Mix Asphalt,” Transportation Research Record: Journal of the Transportation Research Board, V. 2205, No. 1, 2011, pp. 36-39. doi: 10.3141/2205-05

79. Jiménez Romero, J. R.; Agrela Sainz, F.; López Aguilar, M.; Ayuso Muñoz, J.; and Repullo, A. C., “Efecto de la Compactación en la Granulometrica y Resistencia a la fragmentación de un Árido Reciclado y una Zahorra Artificial,” XI Congreso Internacional de Ingeniería de Proyectos, Lugo, Spain, 2007, 12 pp.

80. Tam, V. W. Y.; Wang, K.; and Tam, C. M., “Assessing Relationships among Properties of Demolished Concrete, Recycled Aggregate and Recycled Aggregate Concrete using Regression Analysis,” Journal of Hazardous Materials, V. 152, No. 2, 2008, pp. 703-714. doi: 10.1016/j.jhazmat.2007.07.061

81. Alaejos, P.; Sánchez, M.; Vázquez, E. et al., “Use of Recycled Aggregate in the Production of Structural Concrete,” Commission 2, Working Group 2/5 Recycled concrete, Monograph M-11 ACHE, Madrid, Spain, 2006.

82. Omary, S.; Ghorbel, E.; and Wardeh, G., “Relationships between Recycled Concrete Aggregates Characteristics and Recycled Aggregates Concretes Properties,” Construction and Building Materials, V. 108, 2016, pp. 163-174. doi: 10.1016/j.conbuildmat.2016.01.042

83. Voigt, W., “Theoretische Studien ber die Elasticverhltnisse der Krystalle,” Abh Kgl Ges Wiss Gttingen, V. 34, 1887, pp. 3-51.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer