Comparison of Chemical and Biogenic Acid Attack on Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Comparison of Chemical and Biogenic Acid Attack on Concrete

Author(s): Ali Riza Erbektas, O. Burkan Isgor, and W. Jason Weiss

Publication: Materials Journal

Volume: 117

Issue: 1

Appears on pages(s): 255-264

Keywords: acid attack; bacterial corrosion; biogenic sulfuric acid; chemical attack; deterioration; durability; microbially induced corrosion of concrete (MICC)

DOI: 10.14359/51720293

Date: 1/1/2020

Abstract:
This paper compares biogenic and chemical acid attack for assessing the final stage of microbially induced corrosion of concrete (MICC). Paste specimens were exposed to either biogenic or sulfuric acid solutions. The solutions had an initial pH of 2. Maintaining the pH of the chemical acid solution in the desired range was highly challenging. The pH of biogenic acid solution remained consistent for a longer time. Calcium leaching measurements showed that biofilm on the surface of specimens exposed to biogenic acidification restricted excessive leaching of calcium from the samples. X-ray fluorescence (XRF) results showed that biogenic acid attack caused higher changes in the chemical composition of the specimens. Flexural strength tests did not show a significant difference between the chemical and biogenic acid attack; however, this could be attributed to the short test duration.

Related References:

1. Islander, R. L.; Devinny, J. S.; Mansfeld, F.; Postyn, A.; and Shih, H., “Microbial Ecology of Crown Corrosion in Sewers,” Journal of Environmental Engineering, ASCE, V. 117, No. 6, 1991, pp. 751-770. doi: 10.1061/(ASCE)0733-9372(1991)117:6(751)

2. Parker, C. D., “Mechanics of Corrosion of Concrete Sewers by Hydrogen Sulfide,” Sewage and Industrial Wastes, V. 23, No. 12, 1951, pp. 1477-1485.

3. Sand, W., and Bock, E., “Concrete Corrosion in the Hamburg Sewer System,” Environmental Technology Letters, V. 5, No. 12, 1984, pp. 517-528. doi: 10.1080/09593338409384307

4. Mori, T.; Koga, M.; Hikosaka, Y.; Nonaka, T.; Mishina, F.; Sakai, Y.; and Koizumi, J., “Microbial Corrosion of Concrete Sewer Pipes, H2S Production from Sediments and Determination of Corrosion Rate,” Water Science and Technology, V. 23, No. 7-9, 1991, pp. 1275-1282. doi: 10.2166/wst.1991.0579

5. Mori, T.; Nonaka, T.; Tazaki, K.; Koga, M.; Hikosaka, Y.; and Noda, S., “Interactions of Nutrients, Moisture and pH on Microbial Corrosion of Concrete Sewer Pipes,” Water Research, V. 26, No. 1, 1992, pp. 29-37. doi: 10.1016/0043-1354(92)90107-F

6. Padival, N. A.; Weiss, J. S.; and Arnold, R. G., “Control of Thiobacillus by Means of Microbial Competition: Implications for Corrosion of Concrete Sewers,” Water Environment Research, V. 67, No. 2, 1995, pp. 201-205. doi: 10.2175/106143095X131358

7. Hewayde, E.; Nehdi, M.; Allouche, E.; and Nakhla, G., “Effect of Mixture Design Parameters and Wetting-Drying Cycles on Resistance of Concrete to Sulfuric Acid Attack,” Journal of Materials in Civil Engineering, ASCE, V. 19, No. 2, 2007, pp. 155-163. doi: 10.1061/(ASCE)0899-1561(2007)19:2(155)

8. House, M., and Weiss, W. J., “Review of Microbially Induced Corrosion and Comments on Needs Related to Testing Procedures,” Proceedings of the 4th International Conference on the Durability of Concrete Structures, Purdue University, West Lafayette, IN, 2014, pp. 94-103.

9. Parker, C. D., “Species of Sulphur Bacteria Associated with the Corrosion of Concrete,” Nature, V. 159, No. 4039, 1947, pp. 439-440. doi: 10.1038/159439b0

10. Ling, A. L.; Robertson, C. E.; Harris, J. K.; Frank, D. N.; Kotter, C. V.; Stevens, M. J.; Pace, N. R.; and Hernandez, M. T., “High-Resolution Microbial Community Succession of Microbially Induced Concrete Corrosion in Working Sanitary Manholes,” PLoS One, V. 10, No. 3, 2015, pp. 1-12. doi: 10.1371/journal.pone.0116400

11. Yuan, H.; Dangla, P.; Chatellier, P.; and Chaussadent, T., “Degradation Modeling of Concrete Submitted to Biogenic Acid Attack,” Cement and Concrete Research, V. 70, 2015, pp. 29-38. doi: 10.1016/j.cemconres.2015.01.002

12. Vincke, E.; Verstichel, S.; Monteny, J.; and Verstraete, W., “A New Test Procedure for Biogenic Sulfuric Acid Corrosion of Concrete,” Biodegradation, V. 10, No. 6, 1999, pp. 421-428. doi: 10.1023/A:1008309320957

13. Monteny, J.; Vincke, E.; Beeldens, A.; De Belie, N.; Taerwe, L.; Van Gemert, D.; and Verstraete, W., “Chemical, Microbiological, and In Situ Test Methods for Biogenic Sulfuric Acid Corrosion of Concrete,” Cement and Concrete Research, V. 30, No. 4, 2000, pp. 623-634. doi: 10.1016/S0008-8846(00)00219-2

14. Joseph, A. P.; Keller, J.; Bustamante, H.; and Bond, P. L., “Surface Neutralization and H2S Oxidation at Early Stages of Sewer Corrosion: Influence of Temperature, Relative Humidity and H2S Concentration,” Water Research, V. 46, No. 13, 2012, pp. 4235-4245. doi: 10.1016/j.watres.2012.05.011

15. Peyre Lavigne, M.; Bertron, A.; Auer, L.; Hernandez-Raquet, G.; Foussard, J.-N.; Escadeillas, G.; Cockx, A.; and Paul, E., “An Innovative Approach to Reproduce the Biodeterioration of Industrial Cementitious Products in a Sewer Environment. Part I: Test Design,” Cement and Concrete Research, V. 73, 2015, pp. 246-256. doi: 10.1016/j.cemconres.2014.10.025

16. Grengg, C.; Mittermayr, F.; Ukrainczyk, N.; Koraimann, G.; Kienesberger, S.; and Dietzel, M., “Advances in Concrete Materials for Sewer Systems Affected by Microbial Induced Concrete Corrosion: A Review,” Water Research, V. 134, 2018, pp. 341-352. doi: 10.1016/j.watres.2018.01.043

17. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties, and Materials, third edition, McGraw-Hill, New York, 2006, 684 pp.

18. Roberts, D. J.; Nica, D.; Zuo, G.; and Davis, J. L., “Quantifying Microbially Induced Deterioration of Concrete: Initial Studies,” International Biodeterioration & Biodegradation, V. 49, No. 4, 2002, pp. 227-234. doi: 10.1016/S0964-8305(02)00049-5

19. House, M. W., “Using Biological and Physico-chemical Test Methods to Assess the Role of Concrete Mixture Design in Resistance to Microbially Induced Corrosion.” MSCE thesis, Purdue University, West Lafayette, IN, 2013.

20. Roberts, D. J.; Nica, D.; Zuo, G.; and Davis, J. L., “Quantifying Microbially Induced Deterioration of Concrete: Initial Studies,” International Biodeterioration and Biodegradation, V. 49, 2002. pp. 227-234.

21. Okabe, S.; Odagiri, M.; Ito, T.; and Satoh, H., “Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems,” Applied and Environmental Microbiology, V. 73, No. 3, 2007, pp. 971-980. doi: 10.1128/AEM.02054-06

22. Nica, D.; Davis, J. L.; Kirby, L.; Zuo, G.; and Roberts, D. J., “Isolation and Characterization of Microorganisms Involved in the Biodeterioration of Concrete in Sewers,” International Biodeterioration & Biodegradation, V. 46, No. 1, 2000, pp. 61-68. doi: 10.1016/S0964-8305(00)00064-0

23. Alexander, M. G., and Fourie, C., “Performance of Sewer Pipe Concrete Mixtures with Portland and Calcium Aluminate Cements Subject to Mineral and Biogenic Acid Attack,” Materials and Structures, V. 44, No. 1, 2011, pp. 313-330. doi: 10.1617/s11527-010-9629-1

24. Bielefeldt, A.; Gutierrez-Padilla, M. G. D.; Ovtchinnikov, S.; Silverstein, J.; and Hernandez, M., “Bacterial Kinetics of Sulfur Oxidizing Bacteria and Their Biodeterioration Rates of Concrete Sewer Pipe Samples,” Journal of Environmental Engineering, ASCE, V. 136, No. 7, 2010, pp. 731-738. doi: 10.1061/(ASCE)EE.1943-7870.0000215

25. Li, X.; Kappler, U.; Jiang, G.; and Bond, P. L., “The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment,” Frontiers in Microbiology, V. 8, 2017, p. 683 doi: 10.3389/fmicb.2017.00683

26. Allahverdi, A., and Skvara, F., “Acidic Corrosion of Hydrated Cement Based Materials. Part 1. Mechanism of the Phenomenon,” Ceramics-Silikáty, V. 44, No. 3, 2000, pp. 114-120.

27. Attogbe, E. K., and Rizkalla, S. H., “Response of Concrete to Sulfuric Acid Attack,” ACI Materials Journal, V. 85, No. 6, Nov.-Dec. 1988, pp. 481-488.

28. Grandclerc, A.; Dangla, P.; Gueguen-Minerbe, M.; and Chaussadent, T., “Modelling of the Sulfuric Acid Attack on Different Types of Cementitious Materials,” Cement and Concrete Research, V. 105, 2018, pp. 126-133. doi: 10.1016/j.cemconres.2018.01.014

29. Fridrichová, M.; Dvořák, K.; Gazdič, D.; Mokrá, J.; and Kulísek, K., “Thermodynamic Stability of Ettringite Formed by Hydration of Ye’elimite Clinker,” Advances in Materials Science and Engineering, V. 2016, 2016, pp. 1-7. doi: 10.1155/2016/9280131

30. Shimada, Y., and Young, J. F., “Thermal Stability of Ettringite in Alkaline Solutions at 80°C,” Cement and Concrete Research, V. 34, No. 12, 2004, pp. 2261-2268. doi: 10.1016/j.cemconres.2004.04.008

31. Warren, C. J., and Reardon, E. J., “The Solubility of Ettringite at 25°C,” Cement and Concrete Research, V. 24, No. 8, 1994, pp. 1515-1524. doi: 10.1016/0008-8846(94)90166-X

32. Santhanam, M.; Cohen, M. D.; and Olek, J., “Sulfate Attack Research — Whither Now?” Cement and Concrete Research, V. 31, No. 6, 2001, pp. 845-851. doi: 10.1016/S0008-8846(01)00510-5

33. Gabrisová, A.; Havlica, J.; and Sahu, S., “Stability of Calcium Sulphoaluminate Hydrates in Water Solutions with Various pH Values,” Cement and Concrete Research, V. 21, No. 6, 1991, pp. 1023-1027. doi: 10.1016/0008-8846(91)90062-M

34. Sand, W.; Bock, E.; and White, D. C., “Biotest System for Rapid Evaluation of Concrete Resistance to Sulfur-Oxidizing Bacteria,” Materials Performance, V. 26, No. 3, 1987, pp. 14-17.

35. Ding, L.; Weiss, W. J.; and Blatchley, E. R. III, “Effects of Concrete Composition on Resistance to Microbially Induced Corrosion,” Journal of Environmental Engineering, ASCE, V. 143, No. 6, 2017, p. 4017014 doi: 10.1061/(ASCE)EE.1943-7870.0001197

36. Soleimani, S.; Isgor, O. B.; and Ormeci, B., “Cement and Concrete Research Resistance of Bio Film-Covered Mortars to Microbiologically Influenced Deterioration Simulated by Sulfuric Acid Exposure,” Cement and Concrete Research, V. 53, 2013, pp. 229-238. doi: 10.1016/j.cemconres.2013.06.016

37. Huber, B.; Hilbig, H.; Drewes, J. E.; and Müller, E., “Evaluation of Concrete Corrosion after Short- and Long-Term Exposure to Chemically and Microbially Generated Sulfuric Acid,” Cement and Concrete Research, V. 94, 2017, pp. 36-48. doi: 10.1016/j.cemconres.2017.01.005

38. Yousefi, A.; Allahverdi, A.; and Hejazi, P., “Accelerated Biodegradation of Cured Cement Paste by Thiobacillus Species under Simulation Condition,” International Biodeterioration & Biodegradation, V. 86, 2014, pp. 317-326. doi: 10.1016/j.ibiod.2013.10.008

39. ASTM C267-01(2012), “Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes,” ASTM International, West Conshohocken, PA, 2012, 6 pp.

40. Scrivener, K., and De Belie, N., Bacteriogenic Sulfuric Acid Attack of Cementitious Materials in Sewage Systems, Springer, Dordrecht, the Netherlands, 2013, pp. 305-318.

41. De Belie, N.; Monteny, J.; Beeldens, A.; Vincke, E.; Van Gemert, D.; and Verstraete, W., “Experimental Research and Prediction of the Effect of Chemical and Biogenic Sulfuric Acid on Different Types of Commercially Produced Concrete Sewer Pipes,” Cement and Concrete Research, V. 34, No. 12, 2004, pp. 2223-2236. doi: 10.1016/j.cemconres.2004.02.015

42. Huber, B.; Hilbig, H.; Mago, M. M.; Drewes, J. E.; and Müller, E., “Comparative Analysis of Biogenic and Chemical Sulfuric Acid Attack on Hardened Cement Paste Using Laser Ablation-ICP-MS,” Cement and Concrete Research, V. 87, 2016, pp. 14-21. doi: 10.1016/j.cemconres.2016.05.003

43. Monteny, J.; De Belie, N.; Vincke, E.; Verstraete, W.; and Taerwe, L., “Chemical and Microbiological Tests to Simulate Sulfuric Acid Corrosion of Polymer-Modified Concrete,” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1359-1365. doi: 10.1016/S0008-8846(01)00565-8

44. Ehrich, S.; Helard, L.; Letourneux, R.; Willocq, J.; and Bock, E., “Biogenic and Chemical Sulfuric Acid Corrosion of Mortars,” Journal of Materials in Civil Engineering, ASCE, V. 11, No. 4, 1999, pp. 340-344. doi: 10.1061/(ASCE)0899-1561(1999)11:4(340)

45. ASTM C150/C150M-18, “Standard Specification for Portland Cement,” ASTM International, West Conshohocken, PA, 2018, 9 pp.

46. AASHTO M 85, “Standard Specification for Portland Cement,” American Association of State Highway and Transportation Officials, Washington, DC, 2018.

47. API SPEC 10A, “Specification for Cements and Materials for Well Cementing,” American Petroleum Institute (API), Washington, DC, 2010.

48. API RP 10B-2, “Recommended Practice for Testing Well Cements,” American Petroleum Institute (API), Washington, DC, 2013.

49. Erbektas, A. R.; Isgor, O. B.; and Weiss, W. J., “An Accelerated Testing Protocol for Assessing Microbially Induced Concrete Deterioration during the Bacterial Attachment Phase,” Cement and Concrete Composites, V. 104, 2019, p. 103339. doi: 10.1016/j.cemconcomp.2019.103339

50. Fu, T.; Montes, F.; Suraneni, P.; Youngblood, J.; and Weiss, J., “The Influence of Cellulose Nanocrystals on the Hydration and Flexural Strength of Portland Cement Pastes,” Polymers, V. 9, No. 9, 2017, p. 424. doi: 10.3390/polym9090424

51. Cao, Y.; Zavaterri, P.; Youngblood, J.; Moon, R.; and Weiss, J., “The Influence of Cellulose Nanocrystal Additions on the Performance of Cement Paste,” Cement and Concrete Composites, V. 56, 2015, pp. 73-83. doi: 10.1016/j.cemconcomp.2014.11.008

52. Börger, A.; Supancic, P.; and Danzer, R., “The Ball on Three Balls Test for Strength Testing of Brittle Discs: Stress Distribution in the Disc,” Journal of the European Ceramic Society, V. 22, No. 9-10, 2002, pp. 1425-1436. doi: 10.1016/S0955-2219(01)00458-7

53. ASTM C579-18, “Standard Test Methods for Compressive Strength of Chemical-Resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concretes,” ASTM International, West Conshohocken, PA, 2018, 5 pp.

54. ASTM C109/C109M-16a, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens),” ASTM International, West Conshohocken, PA, 2016, 10 pp.

55. Cao, Y.; Zavattieri, P.; Youngblood, J.; Moon, R.; and Weiss, J., “The Relationship between Cellulose Nanocrystal Dispersion and Strength,” Construction and Building Materials, V. 119, 2016, pp. 71-79. doi: 10.1016/j.conbuildmat.2016.03.077

56. Kim, J.; Yi, C.; and Zi, G., “Biaxial Flexural Strength of Concrete by Two Different Methods,” Magazine of Concrete Research, V. 64, No. 12, 2012, pp. 1057-1065. doi: 10.1680/macr.11.00178

57. Börger, A.; Supancic, P.; and Danzer, R., “The Ball on Three Balls Test for Strength Testing of Brittle Discs: Part II: Analysis of Possible Errors in the Strength Determination,” Journal of the European Ceramic Society, V. 24, No. 10–11, 2004, pp. 2917-2928. doi: 10.1016/j.jeurceramsoc.2003.10.035

58. Danzer, R.; Harrer, W.; Supancic, P.; Lube, T.; Wang, Z.; and Börger, A., “The Ball on Three Balls Test—Strength and Failure Analysis of Different Materials,” Journal of the European Ceramic Society, V. 27, No. 2-3, 2007, pp. 1481-1485. doi: 10.1016/j.jeurceramsoc.2006.05.034

59. Qiao, C.; Suraneni, P.; and Weiss, J., “Flexural Strength Reduction of Cement Pastes Exposed to CaCl2 Solutions,” Cement and Concrete Composites, V. 86, 2018, pp. 297-305. doi: 10.1016/j.cemconcomp.2017.11.021

60. Bouchard, M.; Anzelmo, J.; Rivard, S.; Seyfarth, A.; Arias, L.; Behrens, K.; and Durali-Müller, S., “Global Cement and Raw Materials Fusion/XRF Analytical Solution. II,” Powder Diffraction, V. 26, No. 2, 2011, pp. 176-185. doi: 10.1154/1.3591181

61. Alonso, C.; Andrade, C.; Castellote, M.; and Castro, P., “Chloride Threshold Values to Depassivate Reinforcing Bars Embedded in a Standardized OPC Mortar,” Cement and Concrete Research, V. 30, No. 7, 2000, pp. 1047-1055. doi: 10.1016/S0008-8846(00)00265-9

62. Chang, M. T.; Suraneni, P.; Isgor, O. B.; Trejo, D.; and Weiss, W. J., “Using X-Ray Fluorescence to Assess the Chemical Composition and Resistivity of Simulated Cementitious Pore Solutions,” International Journal of Advances in Engineering Sciences and Applied Mathematics, V. 9, No. 3, 2017, pp. 136-143. doi: 10.1007/s12572-017-0181-x

63. Tsui Chang, M., “The Evaluation of Cementitious Pore Solution Composition and Electrical Resistivity Using X-Ray Fluorescence (XRF),” MS thesis, Oregon State University, Corvallis, OR, 2017.

64. ASTM C114-18, “Standard Test Methods for Chemical Analysis of Hydraulic Cement,” ASTM International, West Conshohocken, PA, 2018, 33 pp.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer