Title:
Properties of Ternary Cement Pastes with Nanosilica and Rice Husk Ash
Author(s):
Daniel da Silva Andrade, João Henrique da Silva Rêgo, Moisés Frías Rojas, Paulo Cesar Morais, Maria José de Souza Serafim, and Anne Neiry Lopes
Publication:
Materials Journal
Volume:
117
Issue:
1
Appears on pages(s):
233-242
Keywords:
nanosilica; portland cement; rice husk ash; silica fume; synergistic effec
DOI:
10.14359/51720291
Date:
1/1/2020
Abstract:
The present study reports on the pioneering addition of rice husk ash (RHA) and silica fume (SF) into portland cement-based (PC-based) materials, combined with nanosilica (NS), aiming to assess the impact of the RHA on the mechanical and microstructure properties of ternary mixtures. Pastes were prepared to perform compressive strength tests, thermal analysis (DTA/TG), infrared spectroscopy, and mercury porosimetry. The highest reduction in the calcium hydroxide index (CH.I) and the highest calciumsilicate-
hydrate (C-S-H) formation are found in the PC-based ternary mixture containing NS plus SF and NS plus RHA after 91 days of hydration. In line with the aforementioned trends, the ternary mixtures containing NS show the highest compressive strength values and reduction of mean diameter of porous. Indeed, we found strong evidence of synergistic effect in ternary mixtures incorporating NS plus RHA or SF, thus supporting their use in fabrication of cementitious materials.
Related References:
1. Aprianti, E.; Shafigh, P.; Bahri, S.; and Farahani, J. R. N., “Supplementary Cementitious Materials Origin from Agricultural Wastes: A Review,” Construction and Building Materials, V. 74, 2015, pp. 176-187. doi: 10.1016/j.conbuildmat.2014.10.010
2. Yusuf, M. O.; Johari, M. A. M.; Ahmad, Z. A.; and Maslehuddin, M., “Strength and Microstructure of Alkali-Activated Binary Blended Binder Containing Palm Oil Fuel Ash and Ground Blast-Furnace Slag,” Construction and Building Materials, V. 52, 2014, pp. 504-510. doi: 10.1016/j.conbuildmat.2013.11.012
3. Part, W. K.; Ramli, M.; and Cheah, C. B., “An Overview on the Influence of Various Factors on the Properties of Geopolymer Concrete Derived from Industrial By-Products,” Construction and Building Materials, V. 77, 2015, pp. 370-395. doi: 10.1016/j.conbuildmat.2014.12.065
4. Silva, E. J., Contribuição para utilização de cinza de casca de arroz na construção civil (Contribution to the use of rice husk ash in civil construction),” MSc thesis, Faculty of Engineering UNESP Ilha Solteira, SP, Brazil, 2011.
5. Tuan, N. V.; Ye, G.; Breugel, K. V.; and Copuroglu, O., “Hydration and Microstructure of Ultra High Performance Concrete Incorporating Rice Husk Ash,” Cement and Concrete Research, V. 41, No. 11, 2011, pp. 1104-1111. doi: 10.1016/j.cemconres.2011.06.009
6. Fedumenti, M. B., “Avaliação da influência da cinza de casca de arroz no comportamento de concretos em relação a propriedades mecânicas e de durabilidade, com ênfase no transporte de íons cloreto (Evaluation of the influence of rice hull ash on the behavior of concretes in relation to mechanical properties and durability, with emphasis on the transport of chloride ions),” MSc thesis, Postgraduate Program in Civil Engineering Vale do Rio dos Sinos University, São Leopoldo, Rio Grande do Sul, Brazil, 2013.
7. Rêgo, J. H. S.; Nepomuceno, A. A.; Figueiredo E. P.; Hasparyk, N. P.; and Borges, L. D., “Effect of Particle Size of Residual Rice-Husk Ash in Consumption of Ca(OH)2,” Journal of Materials in Civil Engineering, ASCE, V. 27, No. 6, 2014, pp. 1-8.
8. Arel, H. S., and Aydin, E., “Use of Industrial and Agricultural Wastes in Construction Concrete,” ACI Materials Journal, V. 115, No. 1, Jan. 2018, pp. 55-64.
9. Rêgo, J. H. S.; Nepomuceno, A. A.; Figueiredo, E. P.; and Hasparyk, N. P., “Microstructure of Cement Pastes with Residual Rice Husk Ash of Low Amorphous Silica Content,” Construction and Building Materials, V. 80, 2015, pp. 56-68. doi: 10.1016/j.conbuildmat.2014.12.059
10. Zadehi, M., and Ramezanioanpour, A. A., “Evaluation of the Mechanical Properties and Durability of Cement Mortars Containing Nanosilica and Rice Husk Ash under Chloride Ion Penetration,” Construction and Building Materials, V. 78, 2015, pp. 354-361.
11. Mohseni, E.; Naseri, F.; Amjadi, R.; Khotbehsara, M. M.; and Ranjabar, M. M., “Microstructure and Durability Properties of Cement Mortars Containing Nano-TiO2 and Rice Husk Ash,” Construction and Building Materials, V. 114, 2016, pp. 656-664. doi: 10.1016/j.conbuildmat.2016.03.136
12. Jamil, M.; Khan, M. N. N.; Karin, M. R.; Kaish, A. B. M. A.; and Zain, M. F. M., “Physical and Chemical Contributions of Rice Husk Ash on the Properties of Mortar,” Construction and Building Materials, V. 128, 2016, pp. 185-198. doi: 10.1016/j.conbuildmat.2016.10.029
13. Hoppe Filho, J.; Garcez, M. R.; Medeiros, M. H. F.; Silva Filho, L. C. P.; and Isaia, G. C., “Reactivity Assessment of Residual Rice-Husk Ashes,” Journal of Materials in Civil Engineering, ASCE, V. 29, No. 6, 2017.
14. Huang, H.; Gao, X.; Wang, H.; and Ye, H., “Influence of Rice Husk Ash on Strength and Permeability of Ultra-High Performance Concrete,” Construction and Building Materials, V. 149, 2017, pp. 621-628. doi: 10.1016/j.conbuildmat.2017.05.155
15. Wilson, W., and Tagnit-Hamou, A., “Workability and Hydration of Superplasticized Cementitious Mixtures with Rice Husk Ash,” ACI Materials Journal, V. 111, No. 5, Sept.-Oct. 2014, pp. 491-500.
16. Balapour, M.; Ramezanianpour, A.; and Hajibandeh, E., “An Investigation on Mechanical and Durability Properties of Mortars Containing Nano and Micro RHA,” Construction and Building Materials, V. 132, 2017, pp. 470-477. doi: 10.1016/j.conbuildmat.2016.12.017
17. Jung, S.; Saraswathy, V.; Karthick, S.; Kathiervel, P.; and Kwon, S., “Microstructure Characteristics of Fly Ash Concrete with Rice Husk Ash and Lime Stone Powder,” International Journal of Concrete Structures and Materials, V. 12, No. 1, 2018, p. 17 doi: 10.1186/s40069-018-0257-4
18. Jung, S. H.; Saraswathy, V.; Karthick, S.; Karthirvel, P.; and Kwon, S., “Microstructure Characteristics of Fly Ash Concrete with Rice Husk Ash and Lime Stone Powder,” International Journal of Concrete Structures and Materials, V. 12, No. 1, 2018, p. 17 doi: 10.1186/s40069-018-0257-4
19. Siddika, A.; Abdullah, A. M.; and Alil, M. H., “Study on Concrete with Rice Husk Ash,” Innovative Infrastructure Solutions, V. 3, 2018, pp. 1-9.
20. Sensale, G. R., and Viacava, I. R. A., “Study on Blended Portland Cements Containing Residual Rice Husk Ash and Limestone Filler,” Construction and Building Materials, V. 166, 2018, pp. 873-888. doi: 10.1016/j.conbuildmat.2018.01.113
21. Khan, W.; Shehzada, K.; Bibi, T.; and Islam, S., “Performance Evaluation of Khyber Pakhtunkhwa Rice Husk Ash (RHA) in Improving Mechanical Behavior of Cement,” Construction and Building Materials, V. 176, 2018, pp. 89-102. doi: 10.1016/j.conbuildmat.2018.04.213
22. Ahsan, M. B., and Hossain, Z., “Supplemental Use of Rice Husk Ash (RHA) as a Cementitious Material in Concrete Industry,” Construction and Building Materials, V. 178, 2018, pp. 1-9. doi: 10.1016/j.conbuildmat.2018.05.101
23. Raisi, E. M.; Amiri, J. V.; and Davoodi, M. R., “Mechanical Performance of Self-Compacting Concrete Incorporating Rice Husk Ash,” Construction and Building Materials, V. 177, 2018, pp. 148-157. doi: 10.1016/j.conbuildmat.2018.05.053
24. Senff, L., “Efeito da adição de micro e nanossílica no comportamento reológico e propriedades no estado endurecido de argamassas e pastas de cimento (Effect of the addition of micro and nanosilica on rheological behavior and properties in the hardened state of mortars and cement pastes),” PhD dissertation, Postgraduate Program in Science and Engineering Materials/Federal University of Santa Catarina, Florianópolis, Brazil, 2009.
25. Sanchez, F., and Sobolev, K., “Nanotechnology in Concrete – A Review,” Construction and Building Materials, V. 24, No. 11, 2010, pp. 2060-2071.
26. Carneiro, M. E., “Obtenção de nanossílica de Equisetum arvenses L. e a sua utilização na modificação de lâminas de madeira de Schizolobium amazonicum (Huber ex Ducke) Barneby (Obtaining of Nanosilica of Equisetum arvenses L. and its use in the modification of wood slides of Schizolobium amazonicum [Huber ex Ducke] Barneby),” PhD dissertation, Postgraduation Program in Forest Engineering/Federal University of Paraná, Curitiba, Brazil, 2012.
27. Fernandez, J. M.; Duran, A.; Navarro-Blasco, I.; Lanas, J.; Sierra, R.; and Alvarez, J. I., “Influence of Nanosilica and Polycarboxylate Ether Superplasticizer on the Performance of Lime Mortars,” Cement and Concrete Research, V. 43, 2013, pp. 12-24. doi: 10.1016/j.cemconres.2012.10.007
28. Hou, P.; Kawashima, S.; Kong, D.; Corr, D. J.; Qian, J.; and Shah, S. P., “Modification Effects of Colloidal NanoSiO2 on Cement Hydration and Its Gel Property,” Composites: Part B, V. 45, No. 1, 2013, pp. 440-448.
29. Moraes, M. Q., “Contribuição aos estudos da influência da nanossílica nas propriedades mecânicas e na trabalhabilidade de concretos para produção em centrais e para fabricação de pré-moldados (Contribution to the studies of the influence of nanosilica on the mechanical properties and the workability of concretes for production in plants and for precast production),” MSc thesis, Federal University of Goiás, Goiânia, Brazil, 2013.
30. Ahari, R. S.; Erdem, T. K.; and Ramyar, K., “Effect of Various Supplementary Cementitious Materials on Rheological Properties of Self-Consolidating Concrete,” Construction and Building Materials, 2015, pp. 89-98.
31. Hussain, S. T., and Sastry, K. V. S. G. K., “Study of Strength Properties of Concrete by Using Micro Silica and Nano Silica,” International Journal of Research in Engineering and Technology, V. 3, 2014, p. 1.
32. Li, W.; Huang, Z.; Cao, F.; Sun, Z.; and Shah, S. P., “Effects of Nano-Silica and Nano-Limestone on Flowability and Mechanical Properties of Ultra-High-Performance Concrete Matrix,” Construction and Building Materials, V. 95, 2015, pp. 366-374. doi: 10.1016/j.conbuildmat.2015.05.137
33. Garg, R.; Bansal, M.; and Aggarwal, Y., “Strength, Rapid Chloride Penetration and Microstructure Study of Cement Mortar Incorporating Micro and Nano Silica,” International Journal of Electrochemical Science, V. 11, 2016, pp. 3697-3713. doi: 10.20964/110455
34. Gesoglu, M.; Guinosi, E.; Assad, D.; and Fakhraddin, M., “Properties of Low Binder Ultra-High Performance Cementitious Composites: Comparison of Nanosilica and Microsilica,” Construction and Building Materials, 2016, pp. 706-713.
35. Chen, Y.; Deng, Y.; and Li, M., “Influence of Nano-SiO2 on the Consistency, Setting Time, Early-Age Strength, and Shrinkage of Composite Cement Pastes,” Advances in Materials Science and Engineering, 2016, 8 pp. http://dx.doi.org/10.1155/2016/5283706.10.1155/2016/5283706
36. Jankovic, K.; Stankovic, S.; Bojovic, D.; Stojanovic, M.; and Antic, L., “The Influence of Nano-Silica and Barite Aggregate on Properties of Ultra High Performance Concrete,” Construction and Building Materials, V. 126, 2016, pp. 147-156. doi: 10.1016/j.conbuildmat.2016.09.026
37. Poloju, K. K; Anil, V; and Manchirryal, R. K., “Impact of Nano Silica on Strength and Durability Properties of Self-Compacting Concrete,” International Journal of Advanced and Applied Sciences, V. 4, No. 5, 2017, pp. 120-126.
38. Abreu, G. B.; Costa, S. M. M.; Gumieri, A. G.; Calixto, J. M. F.; França, R. F. C.; Silva, C.; and Quinones, A. D., “Mechanical Properties and Microstructure of High Performance Concrete Containing Stabilized Nano-Silica,” Revista Matéria, 2017.
39. Andrade, D. S.; Rêgo, J. H. S.; Morais, P. C.; and Rojas, M. F., “Chemical and Mechanical Characterization of Ternary Cement Pastes Containing Metakaolin and Nanosilica,” Construction and Building Materials, V. 159, 2018, pp. 18-26. doi: 10.1016/j.conbuildmat.2017.10.123
40. Jamsheer, A. F.; Kupwade-Patil, K.; Buyukozturk, O.; and Bumajdad, A., “Analysis of Engineering Cement Paste Using Sílica Nanoparticles and Metakaolin Using 29Si NMR, Water Adsorption and Synchrotron X-ray Diffraction,” Construction and Building Materials, V. 180, 2018, pp. 698-709. doi: 10.1016/j.conbuildmat.2018.05.272
41. Pellegrini-Cervantes, M. J.; Almeraya-Calderon, F.; Borunda-Terrazas, A.; and Bautista-Margulis, R. G., Chacón-Nava1 J. G.; Fajardo-San-Miguel, G.; Almaral-Sanchez, J. L.; Barrios-Durstewitz, C. P.; and Martinez-Villafañe, A., “Corrosion Resistance, Porosity and Strength of Blended Portland Cement Mortar Containing Rice Husk Ash and NanoSiO2,” International Journal of Electrochemical Science, V. 8, 2013, pp. 10697-10710.
42. Kumar, N.; Kunal, K. P.; Higuchi, R.; and David, P., Ferrell, D. P.; Luttrull, V. A.; and Lynam, J. G., “Use of Biomass Ash for Development of Engineered Cementitious Binders,” ACS Sustainable Chemistry & Engineering, V. 6, No. 10, 2018, pp. 13122-13130. doi: 10.1021/acssuschemeng.8b02657
43. European Committee for Standardization, “Part 1: Composition, specifications and conformity criteria for common cements,” European standard EN 197-1, Brussels, Belgium, 2011.
44. Andrade, D. S., “Microestrutura de pastas de cimento Portland com nanossilica coloidal e adições minerais altamente reativas (Microstructure of Portland cement pastes with coloidal nanosilica and highly reactive mineral adittions),” PhD dissertation, Postgraduate Program in Structures and Civil Construction/University of Brasilia, Brasilia, Brasil, 2017.
45. Associação Brasileira de Normas Técnicas - Brazilian Association of Technical Standards, “Mortar for Laying and Coating of Walls and Ceilings - Preparation of the Mixture and Determination of the Consistency Index,” NBR 13276, Rio de Janeiro, Brazil, 2005.
46. Khaloo, A.; Mobini, H. M.; and Hosseini, P., “Influence of Different Types of Nano-Sio2 Particles on Properties of High-Performance Concrete,” Construction and Building Materials, V. 113, 2016, pp. 188-201. doi: 10.1016/j.conbuildmat.2016.03.041
47. European Disposals and Nonwovens Association, “Recommended test method: free swell capacity,” ERT 440.2-02, Brussels, Belgium, 2002.
48. Associação Brasileira de Normas Técnicas - Brazilian Association of Technical Standards, “Compression test of cylindrical specimens of concrete,” NBR 5739, Rio de Janeiro, Brazil, 2007.
49. Gualtieri, A. F., “A Guided Training Exercise of Quantitative Phase Analysis Using EXPGUI,” GSAS Tutorials and Examples, 2003.
50. Seekkuarachchi, I. N.; Tanaka, K.; and Kumazawa, H., “Dispersion Mechanism of Nano-Particulate Aggregates Using a High Pressure Wet-Type Jet Mill,” Chemical Engineering Science, V. 63, No. 9, 2008, pp. 2341-2366.
51. Zhao, L.; Guo, X.; Liu, Y.; Ge, C.; Guo, L.; Shu, X.; and Liu, J., “Synergistic Effects of Silica Nanoparticles/Polycarboxylate Superplasticizer Modified Graphene Oxide on Mechanical Behavior and Hydration Process of Cement Composites,” The Royal Society of Chemistry, V. 7, No. 27, 2017, pp. 16,688-16,702. doi: 10.1039/C7RA01716B
52. Fernandez-Carrasco, L.; Torres-Martinez, D.; Morales, L. M.; and Martinez-Ramirez, S., “Infrared Spectroscopy in the Analysis of Building and Construction Materials,” Infrared Spectroscopy—Materials Science, Engineering and Technology, T. Theophile, ed., Intech, Rijeka, Croatia, 2012, pp. 369-382.
53. Bustos, A. M. G.; Gaitero, J. J.; Quinones, G. P. A.; and Elizalde, S. G., “Multi-Scale Analysis of Cement Pastes with Nanosilica Addition,” Advances in Cement Research, V. 26, No. 5, 2014, pp. 271-280. doi: 10.1680/adcr.13.00023
54. Tobón, J. I.; Payá, J. J.; Borrachero, M. V.; and Restrepo, O. J., “Mineralogical Evolution of Portland Cement Blended with Silica Nanoparticles and Its Effect on Mechanical Strength,” Construction and Building Materials, V. 36, 2012, pp. 736-742. doi: 10.1016/j.conbuildmat.2012.06.043
55. Hou, P.; Qian, J.; Cheng, X.; and Shah, S. P., “Effects of the Pozzolanic Reactivity of NanoSiO2 on Cement-based Materials,” Cement and Concrete Composites, V. 55, 2015, pp. 250-258. doi: 10.1016/j.cemconcomp.2014.09.014
56. Frías, M.; Sánchez de Rojas, M. I.; and Cabrera, J., “The Effect That the Pozzolanic Reaction of Metakaolin Has on the Heat Evolution in Metakaolin-Cement Mortars,” Cement and Concrete Research, V. 30, No. 2, 2000, pp. 209-216. doi: 10.1016/S0008-8846(99)00231-8
57. Heikal, M.; Al-Duaij, O. K.; and Ibrahim, N., “Microstructure of Composite Cements Containing Blast-Furnace Slag and Silica Nano-Particles Subjected to Elevated Thermally Treatment Temperature,” Construction and Building Materials, V. 93, 2015, pp. 1067-1077. doi: 10.1016/j.conbuildmat.2015.05.042
58. Nunes, C.; Slizková, Z.; Stefanidou, M.; and Nemecedk, J., “Microstructure of Lime and Lime-Pozzolana Pastes with Nanosilica,” Cement and Concrete Research, V. 83, 2016, pp. 152-163. doi: 10.1016/j.cemconres.2016.02.004
59. Mehta, P. K., and Monteiro, P. J. M., Concreto: Estrutura, propriedades e materiais (Concrete: Structure, properties and materials), Ibracon, third edition, São Paulo, Brazil, 2014.