Title:
Effect of Cement Composition on Fresh State and Heat of Hydration of Portland Cement with Limestone and Slag
Author(s):
Agathe Bourchy, Laury Barnes-Davin, Laetitia Bessette, and Jean Michel Torrenti
Publication:
Materials Journal
Volume:
117
Issue:
1
Appears on pages(s):
153-165
Keywords:
cement composition; compressive strengths; early age; experimental design; heat; hydration
DOI:
10.14359/51719079
Date:
1/1/2020
Abstract:
The exothermy of cement hydration causes a temperature increase, the development of temperature gradients, and a risk of cracking or delayed ettringite formation in large concrete structures. A review of constituents and characteristics of cement has been performed to determine which have the most influence on the thermal activity and heat release. Considering the fast hydration reactions of C3A, which highly increases temperature and mainly forms ettringite during hydration or delayed ettringite if the appropriate conditions are met, two types of clinker (with and without C3A but only C4AF) are selected. The temperature rising in cement is also influenced by the presence of addition. Currently, limestone and slag are mainly used in concrete formulation to improve mechanical and durability properties. Therefore, these two additions have been studied. Three experimental designs are constructed with the variation of three parameters—addition quantity, anhydrite quantity, and medium diameter—on three levels. The results show that the composition of clinker and the addition type impact the hydration heat and the mechanical properties of the cement. The C3A content seems to be the most influential early-age parameter. Finally, when the addition quantity is high, there is a loss of fineness effect on hydration heat produced or mechanical strengths, which can decrease the grinding costs.
Related References:
1. IFSTTAR, “Recommandations pour la Prévention des Désordres dus à la Réaction Sulfatique Interne - Guide Technique,” 2017.
2. Brunetaud, X.; Linder, R.; and Divet, L.; Duragrin, D.; and Damidot, D., “Effect of Curing Conditions and Concrete Mix Design on the Expansion Generated by Delayed Ettringite Formation,” Materials and Structures, V. 40, No. 6, 2007, pp. 567-578.
3. Taylor, H. F. W.; Famy, C.; and Scrivener, K., “Delayed Ettringite Formation,” Cement and Concrete Research, V. 31, No. 5, 2001, pp. 683-693.
4. Martin, R. P.; Bazin, C.; Billo, J.; Estivin, M.; Renaud, J. C.; and Toutlemonde, F., “Experimental Evidence for Understanding DEF Sensitivity to Early-Age Thermal History,” RILEM-JCI International Workshop on Crack Control of Mass Concrete and Related Issues concerning Early-Age of Concrete Structures - CONCRACK 3, France, 2012.
5. Martin, R. P., “Analyse sur Structures Modèles des Effets Mécaniques de la Réaction Sulfatique Interne du Béton,” thesis, Thèse de l’Université de Paris-Est, Paris, France, 2010.
6. Pavoine, A.; Brunetaud, X.; and Divet, L., “The Impact of Cement Parameters on Delayed Ettringite Formation,” Cement and Concrete Composites, V. 34, No. 4, 2012, pp. 521-528.
7. Taylor, H. F., Cement Chemistry, second edition, Thomas Telford, London, UK, 1997.
8. Lea, F. M., Lea’s Chemistry of Cement and Concrete, fourth edition, P. C. Hewlet, ed., 2003.
9. Schindler, S., and Folliard, K. J., “Heat of Hydration Models for Cementitious Materials,” ACI Materials Journal, V. 102, No. 1, Jan.-Feb. 2005, pp. 24-33.
10. Pavoine, A., “Evaluation du Potentiel de Réactivité des Bétons vis-à-vis de la Formation Différée de l’Ettringite,” Université Pierre et Marie Curie - Paris VI, Paris, Franc,e 2003.
11. Kchakech, B., “Etude de l’Influence de l’Échauffement subi par un Béton sur le Risque d’Expansions Associées à la Réaction Sulfatique Interne,” Thèse de l’Université de Paris-Est-Marne-la-Vallée, Paris, France, 2015.
12. Riding, K. A.; Poole, J. L.; and Folliard, K. J., “New Model for Estimating Apparent Activation Energy of Cementitious Systems,” ACI Materials Journal, V. 108, No. 5, Sept.-Oct. 2011, pp. 550-557.
13. Neville, A., Propriétés des Bétons, Eyrolles, Paris, France, 2000.
14. Kelham, S., “The Effect of Cement Composition and Fineness on Expansion Associated with Delayed Ettringite Formation,” Cement and Concrete Composites, V. 18, No. 3, 1996, pp. 171-179.
15. Silva, D. A., and Monteiro, P. J. M., “Early Formation of Ettringite in Tricalcium Aluminate–Calcium Hydroxide–Gypsum Dispersions,” Journal of the American Ceramic Society, V. 90, No. 2, 2007, pp. 614-617.
16. Byfors, J., Plain Concrete at Early Age, Swedish Cement and Concrete Research Institute, Gothenburg, Sweden, 1980.
17. Minard, H., “Etude Intégrée des Processus d’Hydratation, de Coagulation, de Rigidification et de Prise pour un Système C3S-C3A-Sulfates-Alcalins,” thesis, Thèse de l’Université de Bourgogne, Dijon, France, 2003.
18. Lerch, W., and Bogue, R. H., “Heat of Hydration of Portland Cement Pastes,” Journal of Research of the National Bureau of Standards, V. 12, No. 5, 1934, pp. 645-664.
19. Pourchet, S.; Regnaud, L.; Perez, J. P.; and Nonat, A., “Early C3A Hydration in the Presence of Different Kinds of Calcium Sulfate,” Cement and Concrete Research, V. 39, No. 11, 2009, pp. 989-996.
20. Kocaba, V., “Development and Evaluation of Methods to Follow Microstructural Development of Cementitious Systems Including Slags,” thesis, Thèse de l’Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2009.
21. Frigione, G., “Gypsum in Cement,” Advances in Cement Technology, 1983, pp. 485-532.
22. Barbosa, W.; Ramalho, R. D.; and Portella, K. F., “Influence of Gypsum Fineness in the First Hours of Cement Paste: Hydration Kinetics and Rheological Behaviour,” Construction and Building Materials, V. 184, 2018, pp. 304-310.
23. Costoya Fernandez, M. M., “Effect of Particle Size on the Hydration Kinetics and Microstructural Development of Tricalcium Silicate,” thesis, Thèse de l’Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2008.
24. Bentz, D. P.; Garboczi, E. J.; and Haecker, C. J.; and Jensen, O. M., “Effects of Cement Particle Size Distribution on Performance Properties of Portland Cement-Based Materials,” Cement and Concrete Research, V. 29, No. 10, 1999, pp. 1663-1671.
25. Bentz, D. P., “Blending Different Fineness Cements to Engineer the Properties of Cement-Based Materials,” Magazine of Concrete Research, V. 62, No. 5, 2010, pp. 327-338.
26. Bentz, D. P.; Sant, G.; and Weiss, W. J., “Early-Age Properties of Cement-Based Materials: I. Influence of Cement Fineness,” Journal of Materials in Civil Engineering, ASCE, V. 20, No. 7, 2008, pp. 502-508.
27. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256.
28. Berodier, E., “Impact of the Supplementary Cementitious Materials on the Kinetics and Microstructural Development of Cement Hydration,” thesis, Thèse de l’Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2015.
29. Bessa-Badreddine, A., “Etude de la Contribution des Additions Minérales aux Propriétés Physiques, Mécaniques et de Durabilité des Mortiers,” thesis, Thèse de l’Université de Cergy-Pontoise, Cergy, France, 2004.
30. Villagran-Zaccardi, Y.; Gruyaert, E.; Alderete, N.; and De Belie, N., “Influence of Particle Size Distribution of Slag, Limestone and Fly Ash on Early Hydration of Cement Assessed by Isothermal Calorimetry,” International RILEM Conference on Materials, Systems and Structures in Civil Engineering: Concrete with Supplementary Cementitious Materials, 2016.
31. Valcuende, M.; Marco, E.; and Parra, C.; and Serna, P., “Influence of Limestone Filler and Viscosity-Modifying Admixture on the Shrinkage of Self-Compacting Concrete,” Cement and Concrete Research, V. 42, No. 4, 2012, pp. 583-592.
32. Schöler, A.; Lothenbach, B.; Winnefeld, F.; Haha, M. B.; Zajac, M.; and Ludwig, H.-M., “Early Hydration of SCM-Blended Portland Cements: A Pore Solution and Isothermal Calorimetry Study,” Cement and Concrete Research, V. 93, No. Supplement C, 2017, pp. 71-82.
33. Joudi-Bahri, I.; Lecomte, A.; Ouezdou, M. B.; and Achour, T., “Use of Limestone Sands and Fillers in Concrete without Superplasticizer,” Cement and Concrete Composites, V. 34, No. 6, 2012, pp. 771-780.
34. Diederich, P., “Contribution à l’Étude de l’Influence des Propriétés des Fillers Calcaires sur le Comportement Autoplaçant du Béton,” thesis, Thèse de l’Université Toulouse III - Paul Sabatier, Toulouse, France, 2010.
35. Jones, M. R.; Zheng, L.; and Newlands, M. D., “Estimation of the Filler Content Required to Minimise Voids Ratio in Concrete,” Magazine of Concrete Research, V. 55, No. 2, 2003, pp. 193-202.
36. Berodier, E., and Scrivener, K., “Understanding the Filler Effect on the Nucleation and Growth of C-S-H,” Journal of the American Ceramic Society, V. 97, No. 12, 2014, pp. 3764-3773.
37. Bentz, D. P.; Ferraris, C. F.; and Jones, S. Z., “Limestone and Silica Powder Replacements for Cement: Early-Age Performance,” Cement and Concrete Composites, V. 78, 2017, pp. 43-56.
38. Van Rompaey, G., “Etude de la Réactivité des Ciments Riches en Laitier, à Basse Température et à Court Temps, sans Ajout Chloruré,” thesis, Thèse de l’Université libre de Bruxelles, Brussels, Belgium, 2006.
39. Çetin, C.; Erdoğan, S. T.; and Tokyay, M., “Effect of Particle Size and Slag Content on the Early Hydration of Interground Blended Cements,” Cement and Concrete Composites, V. 67, 2016, pp. 39-49.
40. Cyr, M.; Lawrence, P.; and Ringot, E., “Efficiency of Mineral Admixtures in Mortars, Quantification of Physical and Chemical Effects of Fines Admixtures in Relation with Compressive Strength,” Cement and Concrete Research, V. 36, No. 2, 2006, pp. 264-277.
41. Erdogan, S. T., and Koçak, T. Ç., “Influence of Slag Fineness on the Strength and Heat Evolution of Multiple-Clinker Blended Cements,” Construction and Building Materials, V. 155, Supplement C, 2017, pp. 800-810.
42. Gutteridge, W. A., and Dalziel, J. A., “Filler Cement: The Effect of the Secondary Component on the Hydration of Portland Cement: Part I. A Fine Non-Hydraulic Filler,” Cement and Concrete Research, V. 20, No. 5, 1990, pp. 778-782.
43. Scrivener, K., and Wieker, W., “Advances in Hydration at Low, Ambient and Elevated Temperatures,” 9th International Congress on the Chemistry of Cements, 1992, pp. 1449-1482.
44. Talero, R.; Pedrajas, C.; González, M.; Aramburo, C.; Blazquez, A.; and Rahhal, V., “Role of the Filler on Portland Cement Hydration at Very Early Ages: Rheological Behaviour of Their Fresh Cement Pastes,” Construction and Building Materials, V. 151, Supplement C, 2017, pp. 939-949.
45. Lawrence, P.; Cyr, M.; and Ringot, E., “Mineral Admixtures in Mortars: Effect of Type, Amount and Fineness of Fine Constituent on Compressive Strength,” Cement and Concrete Research, V. 35, No. 4, 2005, pp. 1092-1105.
46. Vance, K.; Aguayo, M.; and Oey, T.; Sant, G.; and Neithalath, N., “Hydration and Strength Development in Ternary Portland Cement Blends Containing Limestone and Fly Ash or Metakaolin,” Cement and Concrete Composites, V. 39, 2013, pp. 93-103.
47. Ipavec, A.; Gabrovšek, R.; and Vuk, T.; Kacuic, V.; Macek, J.; and Meden, A., “Carboaluminatephases Formation during the Hydration of Calcite-Containing Portland Cement,” Journal of the American Ceramic Society, V. 94, No. 4, 2011, pp. 1238-1242.
48. Kakali, G.; Tsivilis, S.; and Aggeli, E.; and Bati, M., “Hydration Products of C3A, C3S and Portland Cement in the Presence of CaCO3,” Cement and Concrete Research, V. 30, No. 7, 2000, pp. 1073-1077.
49. Bonavetti, V.; Rahhal, V.; and Irassar, E., “Studies on the Carboaluminate Formation in Limestone Filler-Blended Cements,” Cement and Concrete Research, V. 31, No. 6, 2001, pp. 853-859.
50. Thongsanitgarn, P.; Wongkeo, W.; and Chaipanich, A.; and Poon, C. S., “Heat of Hydration of Portland High-Calcium Fly Ash Cement Incorporating Limestone Powder: Effect of Limestone Particle Size,” Construction and Building Materials, V. 66, 2014, pp. 410-417.
51. Li, W.; Huang, Z.; and Cao, F.; Sun, Z.; and Shah, S. P., “Effects of Nano-silica and Nano-limestone on Flowability and Mechanical Properties of Ultra-High-Performance Concrete Matrix,” Construction and Building Materials, V. 95, 2015, pp. 366-374.
52. Wang, S. H. J. L., “Influence of Limestone Powder on Pore Structure of Mortar,” Journal of Building Materials and Structures, V. 8, No. 14, 2011, pp. 532-535.
53. Sato, T., and Beaudoin, J., “Effect of Nano-CaCO3 on Hydration of Cement Containing Supplementary Cementitious Materials,” Advances in Cement Research, V. 23, No. 1, 2011, pp. 1-11.
54. De Weerdt, K.; Ben Haha, M.; and Le Saout, G.; Kjellsen, K. O.; Justnes, H.; and Lothenbach, B., “Hydration Mechanisms of Ternary Portland Cements Containing Limestone Powder,” Cement and Concrete Research, V. 41, 2011, pp. 279-291.
55. Lothenbach, B.; Le Saout, G.; and Gallucci, E.; and Scrivener, K., “Influence of Limestone on the Hydration of Portland Cements,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 848-860.
56. Han, F.; He, X.; and Zhang, Z., “Hydration Heat of Slag or Fly Ash in the Composite Binder at Different Temperatures,” Thermochimica Acta, V. 655, 2017, pp. 202-210.
57. Klemczak, B., and Batog, M., “Heat of Hydration of Low-Clinker Cements,” Journal of Thermal Analysis and Calorimetry, V. 123, No. 2, 2016, pp. 1351-1360.
58. Massazza, F., and Diamon, M., “Chemistry of Hydration of Cements and Cementitious Systems,” 9th International Congress on the Chemistry of Cement, 1992, pp. 383-429.
59. Waller, V., “Relation entre Composition des Bétons, Exothermie en Cours de Prise et Résistance en Compression,” thesis, Thèse de l’Ecole Nationale des Ponts et Chaussées, Marne-la-Vallée, France, 1999.
60. Arrhénius, S., Quantitative Laws in Biological Chemistry, G. Bell and Sons, ed., London, UK, 1915.
61. Verbeck, G. J., “Chemistry of Hydration of Portland Cement - III. Energetics of the Hydration of Portland Cement,” 4th International Symposium on the Chemistry of Cements, 1960, pp. 1453-1465.
62. Schindler, A. K., “Effect of Temperature on Hydration of Cementitious Materials,” ACI Materials Journal, V. 101, No. 1, Jan.-Feb., 2004, pp. 72-81.
63. D’Aloia, L., and Chanvillard, G., “Determining the ‘Apparent’ Activation Energy of Concrete: Ea—Numerical Simulations of the Heat of Hydration of Cement,” Cement and Concrete Research, V. 32, No. 8, 2002, pp. 1277-1289.
64. De Schutter, G., and Taerwe, L., “Degree of Hydration-Based Description of Mechanical Properties of Early Age Concrete,” Materials and Structures, V. 29, No. 190, 1996, pp. 335-344.
65. Buffo-Lacarrière, L., “Prévision et Évaluation de la Fissuration Précose des Ouvrages en Béton,” thesis, Thèse de l’Université de Toulouse, Toulouse, France, 2007.
66. Powers, T. C., and Brownyard, T. L. “Studies of the Physical Properties of Hardened Portland Cement Paste,” ACI Journal Proceedings, V. 18, No. 9, 1946, pp. 101-132.
67. Knoppik-Wróbel, A., “Cracking Risk in Early-Age RC Walls,” fib PhD Symposium, Karlsruhe, Germany, 2012.
68. Cervera, M.; Faria, R.; and Olivier, J.; and Prato, T., “Numerical Modelling of Concrete Curing, Regarding Hydration and Temperature Phenomena,” Computers & Structures, V. 80, 2002, pp. 1511-1521.
69. Bentz, D. P., “CEMHYD3D: A Three-Dimensional Cement Hydration and Microstructure Development Modeling Package. Version 2.0.,” NIST Building and Fire Research Laboratory, Gaithersburg, MD, 2000.
70. Maekawa, K.; Ishida, T.; and Kishi, T., Multi-Scale Modeling of Structural Concrete, Taylor & Francis, London, UK, 2008.
71. Fairbairn, E. M.; Toledo Filho, R. D.; Silvoso, M. M.; Ribeiro, F. L. B.; Evsukoff, A. G.; Ferreira, I. A.; Guerra, E. A.; Andrade, W. P.; and Faria, E. F., “A New Comprehensive Framework for the Analysis of Mass Concrete: Thermo-Chemo-Mechanical, Experimental, Numerical and Data Modeling,” Dams and Reservoirs, Societies and Environment in the 21st Century, Taylor & Francis, London, UK, 2006.
72. Fairbairn, E. M. R.; Silvoso, M. M.; and Ribeiro, F. L. B., “Determining the Adiabatic Temperature Rise of Concrete by Inverse Analysis: Case Study of a Spillway Gate Pier,” European Journal of Environmental and Civil Engineering, V. 21, No. 3, 2015, pp. 1-17.
73. AFNOR, “NF EN 197-1 Méthodes d’Essais des Ciments Partie 1 : Composition, Spécifications et Critères de Conformité des Ciments Courants,” 2012.
74. Box, G. E. P., “On the Experimental Attainment of Optimal Conditions,” Journal of the Royal Statistical Society. Series A (General), V. 13, 1951, pp. 1-45.
75. Doehlert, D. H., “Uniform Shell Designs,” Applied Statistics, V. 19, 1970, pp. 231-239.
76. Box, G. E. P., “Some Three Level Designs for the Study of Quantitative Variables,” Technometrics, V. 2, 1960, pp. 455-475.
77. Roquemore, K. G., “Hybrid Designs for Quadratic Response Surfaces,” Technometrics, V. 18, 1976, pp. 419-424.
78. AFNOR, “NF EN 196-9 Méthodes d’Essais des Ciments Partie 9 : Chaleur d’Hydratation - Méthode Semi-Adiabatique,” 2010.
79. Vesilind, P. A., “The Rosin-Rammler Particle Size Distribution,” Resource Recovery and Conservation, V. 5, No. 3, 1980, pp. 275-277.
80. AFNOR, “NF EN 196-3+A1 Méthodes d’Essais des Ciments. Partie 3 : Détermination du Temps de Prise et de la Stabilité,” 2009.
81. AFNOR, “NF EN 196-1 Méthode d’Essais des Ciments. Partie 1 : Détermination des Résistances Mécaniques,” 2006.
82. Boudchicha, A., “Utilisation des Additions Minérales et des Adjuvants Fluidifiants pour l’Amélioration des Propriétés Rhéologiques et Mécaniques des Bétons,” thesis, Thèse de l’Université Mentouri Constantine, Constantine, Algeria, 2007.
83. Ferraris, C. F.; Obla, K. H.; and Hill, R., “The Influence of Mineral Admixtures on the Rheology of Cement Paste and Concrete,” Cement and Concrete Research, V. 31, 2001, pp. 245-255.
84. Sprung, S.; Kuhlmann, K.; and Ellerbrock, H. G., “Particle Size Distribution and Properties of Cement. Part II. Water Demand of Portland Cement,” Zement - Kalk - Gips International, V. 38, 1985, pp. 528-534.
85. Scrivener, K.; Lothenbach, B.; De Belie, N.; Gruyaert, E.; Skibsted, J.; Snellings, R.; and Vollpracht, A., “TC 238-SCM: Hydration and Microstructure of Concrete with SCMs,” Materials and Structures, V. 48, Issue 4, Apr. 2015, pp. 835-862.
86. Scrivener, K. L., and Nonat, A., “Hydration of Cementitious Materials, Present and Future,” Cement and Concrete Research, V. 41, No. 7, 2011, pp. 651-665.