Title:
Review, Sampling, and Evaluation of Landfilled Fly Ash
Author(s):
Gopakumar Kaladharan, Asghar Gholizadeh-Vayghan, and Farshad Rajabipour
Publication:
Materials Journal
Volume:
116
Issue:
4
Appears on pages(s):
113-122
Keywords:
beneficiation; fly ash; landfill; recovered ash; statistical sampling
DOI:
10.14359/51716750
Date:
7/1/2019
Abstract:
The growing scarcity of high-quality fly ash has urged concrete researchers and practitioners to investigate unconventional sources such as landfilled fly ash. This paper presents a summary of the potential issues with using landfilled fly ash as a concrete pozzolan. To that end, successful characterization of fly ash landfills is crucial to determine the viability of a given landfill as a pozzolan resource. Accordingly, a statistical sampling approach was developed and applied to a Class F fly ash landfill in Pennsylvania. Samples taken from the landfill were tested based on ASTM C618 requirements and statistical analyses were performed to determine the necessary beneficiation strategy. Blended mortar and concrete mixtures incorporating the beneficiated fly ash were tested for slump, plastic and hardened air content, compressive strength, and mitigation of alkali-silica reaction (ASR).
Related References:
1. Lothenbach, B.; Scrivener, K.; and Hooton, R. D., “Supplementary Cementitious Materials,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1244-1256. doi: 10.1016/j.cemconres.2010.12.001
2. ACI Committee 232, “Report on the Use of Fly Ash in Concrete (ACI 232.2R-18),” American Concrete Institute, Farmington Hills, MI, 2018, 56 pp.
3. AASHTO R80-17, “Standard Practice for Determining the Reactivity of Concrete Aggregates and Selecting Appropriate Measures for Preventing Deleterious Expansion in New Concrete Construction,” American Association of State Highway and Transportation Officials, Washington, DC, 2017.
4. AASHTO Subcommittee on Materials (SOM), “Fly Ash Task Force Report,” Nov. 4, 2016.
5. American Coal Ash Association (ACAA) Production and Use Reports 2000-2016, https://www.acaausa.org/Publications/Production-Use-Reports. (last accessed Dec. 15, 2017)
6. American Road & Transportation Builders Association, “Production and Use of Coal Combustion Products in the U.S.— Market Forecast through 2033,” 2015.
7. McCarthy, M. J.; Jones, M. R.; Zheng, L.; Robl, T. L.; and Groppo, J. G., “Characterising Long-Term Wet-Stored Fly Ash Following Carbon and Particle Size Separation,” Fuel, V. 111, 2013, pp. 430-441. doi: 10.1016/j.fuel.2013.02.048
8. Carroll, R. A., “Coal Combustion Products in the United Kingdom and the Potential of Stockpile Ash,” 2015 World Coal Ash Conference, 2015.
9. Hower, J. C.; Groppo, J. G.; Graham, U. M.; Ward, C. R.; Kostova, I. J.; Maroto-Valer, M. M.; and Dai, S., “Coal-Derived Unburned Carbons in Fly Ash: A Review,” International Journal of Coal Geology, V. 179, 2017, pp. 11-27. doi: 10.1016/j.coal.2017.05.007
10. McCarthy, M. J.; Tittle, P. A. J.; and Dhir, R. K., “Characterization of Conditioned Pulverized Fuel Ash for Use as a Cement Component in Concrete,” Magazine of Concrete Research, V. 51, No. 3, 1999, pp. 191-206. doi: 10.1680/macr.1999.51.3.191
11. Wirth, X.; Shearer, C. R.; Burns, S. E.; and Kimberly, E., “Evolution of the Properties of Organic Matter and Mineral Phases of Reclaimed Coal Fly Ash,” World of Coal Ash 2017.
12. Akinyemi, S. A.; Akinlua, A.; Gitari, W. M.; Khuse, N.; Eze, P.; Akinyeye, R. O.; and Petrik, L. F., “Natural Weathering in Dry Disposed Ash Dump: Insight from Chemical, Mineralogical and Geochemical Analysis of Fresh and Unsaturated Drilled Cores,” Journal of Environmental Management, V. 102, 2012, pp. 96-107. doi: 10.1016/j.jenvman.2011.11.018
13. Ahmaruzzaman, M., “A Review on the Utilization of Fly Ash,” Progress in Energy and Combustion Science, V. 36, No. 3, 2010, pp. 327-363. doi: 10.1016/j.pecs.2009.11.003
14. Turner, W. C., and Doty, S., Energy Management Handbook—Industrial Engineering, Fairmont Press, Lilburn, GA, 2004.
15. Bahadori, A., and Vuthaluru, H. B., “Estimation of Potential Savings from Reducing Unburned Combustible Losses in Coal-Fired Systems,” Applied Energy, V. 87, No. 12, 2010, pp. 3792-3799. doi: 10.1016/j.apenergy.2010.06.009
16. Yan, W., and Li, J., “Modeling of the Unburned Carbon in Fly Ash,” Energy and Power Engineering, V. 1, No. 2, 2009, pp. 90-93. doi: 10.4236/epe.2009.12014
17. Dinarloo, S., and Hower, J., “Prediction of the Unburned Carbon Content of Fly Ash in Coal-Fired Power Plants,” Coal Combustion and Gasification Products, V. 7, 2015, pp. 19-29.
18. Bartoňová, L., “Unburned Carbon from Coal Combustion Ash: An Overview,” Fuel Processing Technology, V. 134, 2015, pp. 136-158. doi: 10.1016/j.fuproc.2015.01.028
19. Bilen, M., and Kizgut, S., “Modeling of Unburned Carbon in Fly Ash and Importance of Size Parameters,” Fuel Processing Technology, V. 143, 2016, pp. 7-17. doi: 10.1016/j.fuproc.2015.10.039
20. Hower, J. C.; Robl, T. L.; Rathbone, R. F.; Schram, W. H.; and Thomas, G. A., “Characterization of Pre- and Post-NOx Conversion Fly Ash from the Tennessee Valley Authority’s John Sevier Fossil Plant,” 12th International Symposium on Coal Combustion By-Product (CCB) Management and Use, Electric Power Research Institute.
21. Mohebbi, M.; Rajabipour, F.; and Scheetz, B., “Evaluation of Two-Atmosphere Thermogravimetric Analysis for Determining the Unburned Carbon Content in Fly Ash,” Journal of Materials in Civil Engineering, ASCE, V. 6, 2017, pp. 258-279.
22. Hill, R. L.; Sarkar, S. L.; Rathbone, R. F.; and Hower, J. C., “An Examination of Fly Ash Carbon and Its Interactions with Air Entraining Agent,” Cement and Concrete Research, V. 27, No. 2, 1997, pp. 193-204. doi: 10.1016/S0008-8846(97)00008-2
23. Hill, R.; Rathbone, R.; and Hower, J. C., “Investigation of Fly Ash Carbon by Thermal Analysis and Optical Microscopy,” Cement and Concrete Research, V. 28, No. 10, 1998, pp. 1479-1488. doi: 10.1016/S0008-8846(98)00122-7
24. Ahmed, Z. T.; Hand, D. W.; Sutter, L. L.; and Watkins, M. K., “Fly Ash Iodine Number for Measuring Adsorption Capacity of Coal Fly Ash,” ACI Materials Journal, V. 111, No. 4, July-Aug. 2014, pp. 383-390. doi: 10.14359/51686582
25. Watkins, M. K.; Ahmed, Z.; Sutter, L.; and Hand, D., “Characterization of Coal Fly Ash by Absolute Foam Index,” ACI Materials Journal, V. 112, No. 3, May-June 2015, pp. 393-398.
26. Sutter, L.; Hooton, R. D.; and Schlorholtz, S., “Methods for Evaluating Fly Ash for Use in Highway Concrete,” NCHRP Report 749, National Academies Press, Washington, DC, 2013. doi:10.17226/2248310.17226/22483
27. Castleman, J., Coal Combustion Products (CCPs): Characterization, Utilization and Beneficiation, Elsevier Ltd., 2017, pp. 309-326. doi:10.1016/B978-0-08-100945-1.00012-510.1016/B978-0-08-100945-1.00012-5
28. Keppeler, J. G., “Carbon Burn-out and Update on Commercial Applications,” International Ash Utilization Symposium, 2001.
29. PMI Ash Technologies FAQ, http://www.pmiash.com/cboFAQs.asp. (last accessed Dec. 15, 2017)
30. Moore, A. D., Electrostatics and Its Applications, Wiley, 1973.
31. Kim, J.; Cho, H.; Kim, S.; and Chun, H., “Electrostatic Beneficiation of Fly Ash Using an Ejector‐Tribocharger,” Journal of Environmental Science and Health, Part A, V. 35, No. 3, 2000, pp. 357-377. doi: 10.1080/10934520009376976
32. Masuda, S.; Toraguchi, M.; Takahashi, T.; and Haga, K., “Electrostatic Beneficiation of Coal Using a Cyclone-Tribocharger,” IEEE Transactions on Industry Applications, V. IA-19, No. 5, 1983, pp. 789-793. doi: 10.1109/TIA.1983.4504289
33. Ban, H.; Li, T. X.; Hower, J. C.; Schaefer, J. L.; and Stencel, J. M., “Dry Triboelectrostatic Beneficiation of Fly Ash,” Fuel, V. 76, No. 8, 1997, pp. 801-805. doi: 10.1016/S0016-2361(97)00045-8
34. Soong, Y.; Schoffstall, M. R.; and Link, T. A., “Triboelectrostatic Beneficiation of Fly Ash,” Fuel, V. 80, No. 6, 2001, pp. 879-884. doi: 10.1016/S0016-2361(00)00150-2
35. Maroto-Valer, M.; Taulbee, D. N.; and Hower, J. C., “Novel Separation of the Differing Forms of Unburned Carbon Present in Fly Ash Using Density Gradient Centrifugation,” Energy & Fuels, V. 13, No. 4, 1999, pp. 947-953. doi: 10.1021/ef990029s
36. Groppo, J.; Robl, T.; and Hower, J. C., “The Beneficiation of Coal Combustion Ash,” Geological Society of London, Special Publications, V. 236, No. 1, 2004, pp. 247-262. doi: 10.1144/GSL.SP.2004.236.01.15
37. Kim, J. K.; Cho, H. C.; and Kim, S. C., “Removal of Unburned Carbon from Coal Fly Ash Using a Pneumatic Triboelectrostatic Separator,” Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, V. 36, No. 9, 2001, pp. 1709-1724. doi: 10.1081/ESE-100106253
38. Cangialosi, F.; Notarnicola, M.; Liberti, L.; and Stencel, J., “The Role of Weathering on Fly Ash Charge Distribution during Triboelectrostatic Beneficiation,” Journal of Hazardous Materials, V. 164, No. 2-3, 2009, pp. 683-688. doi: 10.1016/j.jhazmat.2008.08.050
39. Baker, L.; Gupta, A.; and Gasiorowski, S., “Triboelectrostatic Beneficiation of Land Filled Fly Ash,” 2015 World of Coal Ash (WOCA) Conference, Nashville, TN, May 5-7, 2015.
40. Baltrus, J. P.; Diehl, J. R.; Soong, Y.; and Sands, W., “Triboelectrostatic Separation of Fly Ash and Charge Reversal,” Fuel, V. 81, No. 6, 2002, pp. 757-762. doi: 10.1016/S0016-2361(01)00196-X
41. Minkara, R., Coal Combustion Products (CCPs): Characterization, Utilization and Beneficiation, Elsevier Ltd., 2017, pp. 327-342. doi:10.1016/B978-0-08-100945-1.00013-710.1016/B978-0-08-100945-1.00013-7
42. RestoreAir Passivation of Activated Carbon in Ash, Headwaters Technical Bulletin, http://flyash.com/data/upfiles/resource/TB 36 RestoreAir 2.2 2015.pdf. (last accessed Jan. 5, 2018)
43. Minkara, R., and Kelley, J. M., “Second Generation Carbon Passivation Agent with Tamed Dosing Response for Treatment of Carbon Containing Fly Ash,” World of Coal Ash, 2015.
44. Soong, Y.; Schoffstall, M.; Gray, M.; Knoer, J.; Champagne, K.; Jones, R.; and Fauth, D., “Dry Beneficiation of High Loss-on-Ignition Fly Ash,” Separation and Purification Technology, V. 26, No. 2-3, 2002, pp. 177-184. doi: 10.1016/S1383-5866(01)00162-9
45. Groppo, J. G., “Selective Beneficiation for High Loss-of-Ignition Fly Ash,” Mining Engineering, V. 48, 1996, pp. 51-53.
46. Hwang, J. Y.; Sun, X.; and Li, Z., “Unburned Carbon from Fly Ash for Mercury Adsorption : I. Separation and Characterization of Unburned Carbon,” Journal of Minerals & Materials Characterization & Engineering, V. 1, No. 01, 2002, pp. 39-60. doi: 10.4236/jmmce.2002.11004
47. Hwang, J.-Y., “Wet Process for Fly Ash Beneficiation,” U.S. Patent No. 5,047,145, 1991.
48. Sung, H.; Yoo, K.; and Lee, S., “The Removal of Unburned Carbon from Fly Ash by Kerosene Extraction,” Geosystem Engineering, V. 19, No. 2, 2016, pp. 96-99. doi: 10.1080/12269328.2015.1096841
49. Mehrotra, V. P.; Sastry, K. V. S.; and Morey, B. W., “Review of Oil Agglomeration Techniques for Processing of Fine Coals,” International Journal of Mineral Processing, V. 11, No. 3, 1983, pp. 175-201. doi: 10.1016/0301-7516(83)90025-X
50. Hela, R., and Orsáková, D., “The Mechanical Activation of Fly Ash,” Procedia Engineering, V. 65, 2013, pp. 87-93. doi: 10.1016/j.proeng.2013.09.016
51. Cheerarot, R., and Jaturapitakkul, C., “A Study of Disposed Fly Ash from Landfill to Replace Portland Cement,” Waste Management (New York, N.Y.), V. 24, No. 7, 2004, pp. 701-709. doi: 10.1016/j.wasman.2004.02.003
52. McCarthy, M. J.; Zheng, L.; Dhir, R. K.; and Tella, G., “Dry-Processing of Long-Term Wet-Stored Fly Ash for Use as an Addition in Concrete,” Cement and Concrete Composites, 2017, doi: 10.1016/j.cemconcomp.2017.10.004
53. Knowles, J., “New Commercial Beneficiation Process Staged Turbulent Air Reactor (STAR),” 2009 World of Coal Ash (WOCA) Conference, Lexington, KY, May 4-7, 2009.
54. Knowles, J., and Fedorka, W., “A New Solution for a Long-standing Dilemma,” Ash at Work, Issue 2, 2015.
55. Velandia, D. F.; Lynsdale, C. J.; Provis, J. L.; Ramirez, F.; and Gomez, A. C., “Evaluation of Activated High Volume Fly Ash Systems Using Na2SO4, Lime and Quicklime in Mortars with High Loss on Ignition Fly Ashes,” Construction and Building Materials, V. 128, 2016, pp. 248-255. doi: 10.1016/j.conbuildmat.2016.10.076
56. Shi, C., and Day, R. L., “Acceleration of the Reactivity of Fly Ash by Chemical Activation,” Cement and Concrete Research, V. 25, No. 1, 1995, pp. 15-21. doi: 10.1016/0008-8846(94)00107-A
57. Provis, J. L., and Van Deventer, J. S. J., Geopolymers: Structures, Processing, Properties and Industrial Applications, Elsevier, 2009.
58. Shi, C.; Roy, D.; and Krivenko, P., Alkali-Activated Cements and Concretes, CRC Press, Boca Raton, FL, 2003.
59. Diaz-Loya, I.; Juenger, M.; Seraj, S.; and Minkara, R., “Extending Supplementary Cementitious Material Resources: Reclaimed and Remediated Fly Ash and Natural Pozzolans,” Cement and Concrete Composites, 2017, pp. 4-11. doi: 10.1016/j.cemconcomp.2017.06.011
60. Al-Shmaisani, S., “Evaluation of Reclaimed and Remediated Fly Ashes as a Substitute for Class F Fly Ash in Concrete,” master’s thesis, University of Texas at Austin, Austin, TX, 2017, 111 pp.
61. McCarthy, M. J.; Robl, T.; and Csetenyi, L. J., Coal Combustion Products (CCPs): Characterization, Utilization and Beneficiation, Elsevier Ltd., 2017. doi:10.1016/B978-0-08-100945-1.00014-910.1016/B978-0-08-100945-1.00014-9
62. McCarthy, M. J.; Tittle, P. A. J.; and Dhir, R. K., “Influences of Conditioned Pulverized-Fuel Ash as a Cement Component on the Properties of Concrete,” Magazine of Concrete Research, V. 52, No. 5, 2000, pp. 329-343. doi: 10.1680/macr.2000.52.5.329
63. McCarthy, M.; Tittle, P. A.; Kii, K.; and Dhir, R., “Mix Proportioning and Engineering Properties of Conditioned PFA Concrete,” Cement and Concrete Research, V. 31, No. 2, 2001, pp. 321-326. doi: 10.1016/S0008-8846(00)00469-5
64. McCarthy, M.; Dhir, R.; Halliday, J.; and Wibowo, A., “Role of PFA Quality and Conditioning in Minimising Alkali-Silica Reaction in Concrete,” Magazine of Concrete Research, V. 58, No. 1, 2006, pp. 49-61. doi:10.1680/macr.2006.58.1.49