Application of Acoustic Emission Analysis—Pullout Experiments with Bonded Anchors

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Application of Acoustic Emission Analysis—Pullout Experiments with Bonded Anchors

Author(s): Manuel Raith, Thomas Kränkel, and Christian Große

Publication: Structural Journal

Volume: 116

Issue: 1

Appears on pages(s): 51-56

Keywords: acoustic emission testing; Bancroft algorithm; bonded anchors; fastening techniques; pullout

DOI: 10.14359/51711135

Date: 1/1/2019

Abstract:
In recent years, fastening technology has steadily become more important in construction practice, where bonded anchors as connecting elements are at the forefront. The production of durable and secure connections necessitates an in-depth knowledge of the mode of action of bonded anchors, their interaction with the bonding substrate, and the resulting load-bearing capacity. In construction practice, pullout experiments are performed on anchors to assess their load-bearing performance. However, the processes involved in crack formation before anchor failure cannot be determined in classical pullout experiments. Acoustic emission analysis was combined with pullout experiments to study the onset and evolution of damage until anchor failure. Acoustic emission analysis has emerged as an extremely useful method for observing the dynamic process of crack formation, crack evolution, and, ultimately, the failure of bonded anchors in concrete during pullout testing. This process results in acoustic emissions that can be recorded by a suitable measuring technique and sensor technology. The determination of the coordinates of the sources of sound emission (localization) is a particularly important aspect of the analysis of acoustic emission data. The presented results show good agreement between crack patterns observed on the surface of concrete specimens and the distribution of the acoustic emission sources inside the specimens. It was possible to show that the sources of acoustic emission shift to greater concrete depths with increasing load on the bonded anchors. The sources of acoustic emission were therefore in good agreement with stress distributions determined by numerical simulations.

Related References:

1. Spieth, H., “Tragverhalten und Bemessung von eingemörtelten Bewehrungsstäben,” dissertation, Fakultät für Bauingenieur- und Vermessungswesen, Institut für Werkstoffe im Bauwesen der Universität Stuttgart. Stuttgart, Germany, 2002.

2. Ammann, W., “Static and Dynamic Long-Term Behaviour of Anchors,” Anchors in Concrete—Design and Behavior, SP-130, G. A. Senkiw and H. B. Lancelot III, eds., American Concrete Institute, Farmington Hills, MI, 1991, pp. 205-220.

3. Appl, J.-J., “Tragverhalten von Verbunddübeln unter Zugbelastung,” dissertation, Fakultät für Bau- und Umweltingenieurwissenschaften, Institut für Werkstoffe im Bauwesen der Universität Stuttgart. Stuttgart, Germany, 2009.

4. Bowditch, M. R., “The Durability of Adhesive Joints in the Presence of Water,” International Journal of Adhesion and Adhesives, V. 16, No. 2, 1996, pp. 73-79. doi: 10.1016/0143-7496(96)00001-2

5. Chin, J.; Hunston, D.; and Forster, A., “Thermo-viscoelastic Analysis of Ambient Cure Epoxy Adhesives Used in Construction Applications,” NISTIR 7429. National Institute of Standards and Technology, Washington, DC, 37 pp.

6. Çolak, A., “Parametric Study of Factors Affecting the Pull-out Strength of Steel Rods Bonded into Precast Concrete Panels,” International Journal of Adhesion and Adhesives, V. 21, No. 6, 2001, pp. 487-493. doi: 10.1016/S0143-7496(01)00028-8

7. Çolak, A., “Estimation of Ultimate Tension Load of Methylmethacrylate Bonded Steel Bars into Concrete,” International Journal of Adhesion and Adhesives, V. 27, No. 8, 2007, pp. 653-660. doi: 10.1016/j.ijadhadh.2006.12.001

8. Cook, R. A., “Behavior of Chemically Bonded Anchors,” Journal of Structural Engineering, ASCE, V. 119, No. 9, 1993, pp. 2744-2762. doi: 10.1061/(ASCE)0733-9445(1993)119:9(2744)

9. Cook, R. A.; Kunz, J.; Fuchs, W.; and Konz, R. C., “Behavior and Design of Single Adhesive Anchors under Tensile Load in Uncracked Concrete,” ACI Structural Journal, V. 95, No. 1, Jan.-Feb. 1998, pp. 9-26.

10. Cook, R. A., and Konz, R. C., “Anchoring with Bonded Fasteners,” International Symposium on Connection between Steel and Concrete, R. Eligehausen, ed., RILEM Publications, pp. 361-370.

11. Cook, R. A.; Douglas, E. P.; and Davis, T. M., “Adhesive Anchors in Concrete under Sustained Loading Conditions,” NCHRP Report 639, Transportation Research Board Of The National Academies, Washington DC, 2009.

12. Cook, R. A.; Douglas, E. P.; Davis, T. M.; and Liu, C., “Long-Term Performance of Epoxy Adhesive Anchor Systems,” NCHRP Report 757, Transportation Research Board of the National Academies, Washington DC, 2013.

13. Davis, T. M., “Sustained Load Performance of Adhesive Anchor Systems in Concrete,” dissertation, the University of Florida, Gainesville, FL, 2012.

14. Eligehausen, R., and Mallée, R., Befestigungstechnik im Beton- und Mauerwerkbau, Ernst & Sohn, Berlin, Germany, 2000.

15. El Menoufy, A. M., “Creep Behaviour of Post-Installed Adhesive Anchors under Various Sustained Load Levels and Environmental Exposures,” University of Waterloo, Waterloo, ON, Canada, 2010.

16. Feng, C. W.; Keong, C. W.; Hsueh, Y. P.; Wang, Y. Y.; and Sue, H. J., 2005, “Modeling of Long-Term Creep Behavior of Structural Epoxy Adhesives,” International Journal of Adhesion and Adhesives, V. 25, No. 5, pp. 427-436. doi: 10.1016/j.ijadhadh.2004.11.009

17. Hand, H. M.; Arah, C. O.; Mc Namara, D. K.; and Mecklenburg, M. F., 1991, “Effects of Environmental Exposure on Adhesively Bonded Joints,” International Journal of Adhesion and Adhesives, V. 11, No. 1, pp. 15-23. doi: 10.1016/0143-7496(91)90056-N

18. Hofmann, J. E., “Tragverhalten und Bemessung von Befestigungen unter beliebiger Querbelastung in ungerissenem Beton,” dissertation, Fakultät für Fakultät für Bau- und Umweltingenieurwissenschaften, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Stuttgart, Germany, 2002.

19. Kunz, J.; Cook, R. A.; Fuchs, W.; and Spieth, H., 1998, “Tragverhalten und Bemessung von chemischen Befestigungen (Load Bearing Behavior and Design of Adhesive Anchors),” Beton- und Stahlbetonbau, V. 93, No. 1, pp. 15-19., 44-49. doi: 10.1002/best.199800030

20. Lehr, B., “Tragverhalten von Verbunddübeln unter zentrischer Belastung im ungerissenen Beton – Gruppenbefestigungen und Befestigungen am Bauteilrand,” dissertation, Fakultät für Bauingenieur- und Vermessungswesen, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Stuttgart, Germany, 2003.

21. Meline, R. J.; Gallaher, M.; and Duane, J., “Seismic, Creep, and Tensile Testing of Various Epoxy Bonded Rebar Products in Hardened Concrete,” Final Report No. CA06-0247, California Department of Transportation, Sacramento, CA, 2007, 122 pp.

22. Mészároš, J., “Tragverhalten von Einzelverbunddübeln unter zentrischer Kurzzeitbelastung,” dissertation, Fakultät für Bauingenieur- und Vermessungswesen, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Stuttgart, Germany, 2002.

23. Simons, N. I., “Verbundverhalten von eingemörtelten Bewehrungsstäben unter zyklischer Beanspruchung,” dissertation, Fakultät für Bau- und Umweltingenieurwissenschaften, Institut für Werkstoffe im Bauwesen der Universität Stuttgart, Stuttgart, Germany, 2007.

24. Unterweger, R., “Experimentelle und numerische Untersuchungen zum Tragverhalten von chemischen Verankerungen,” dissertation, Studienrichtung Kulturtechnik und Wasserwirtschaft, Institut für konstruktiven Ingenieurbau, Universität für Bodenkultur Wien, Wien, Austria, 1999.

25. Zavliaris, K. D.; Kollias, S.; and Speare, P. R. S., 1996, “An Experimental Study of Adhesively Bonded Anchorages in Concrete,” Magazine of Concrete Research, V. 48, No. 175, pp. 79-93. doi: 10.1680/macr.1996.48.175.79

26. Kränkel, T.; Lowke, D.; and Gehlen, C., “Prediction of the Creep Behavior of Bonded Anchors until Failure,” Bond in Concrete 2012: Bond, Anchorage, Detailing—Fourth International Symposium, Cairns, Metelli, and Plizzari, eds., V. 1, 2012, pp. 545-552.

27. Kränkel, T.; Lowke, D.; and Gehlen, C., 2015, “Prediction of the Creep Behaviour of Bonded Anchors until Failure—A Rheological Approach,” Construction and Building Materials, V. 75, pp. 458-464. doi: 10.1016/j.conbuildmat.2014.11.048

28. McVay, M. C.; Cook, R. A.; and Krishnamurthy, K., 1996, “Pullout Simulation of Post-installed Chemically Bonded Anchors,” Journal of Structural Engineering, ASCE, V. 122, No. 9, pp. 1016-1024. doi: 10.1061/(ASCE)0733-9445(1996)122:9(1016)

29. Krishnamurthy, K., “Development of a Viscoplastic Consistent Tangent FEM Model with Applications to Adhesive Bonded Anchors,” dissertation, University of Florida, Gainesville, FL, 1996.

30. Grosse, C. U., and Ohtsu, M., Acoustic Emission Testing, Springer, 2008.

31. Kurz, J. H., Verifikation von Bruchprozessen bei gleichzeitiger Automatisierung der Schallemissionsanalyse an Stahl-und Stahlfaserbeton, 2006.

32. Raith, M., Schallemissionsanalyse bei Pulloutexperimenten an Verbunddübeln, Masterarbeit, Lehrstuhl für Zerstörungsfreie Prüfung der Technischen Universität München, München, 2013.

33. Bancroft, S., 1985, “An Algebraic Solution of the GPS Equations,” IEEE Transactions on Aerospace and Electronic Systems, V. AES-21, No. 1, pp. 56-59. doi: 10.1109/TAES.1985.310538

34. EOTA, “Guideline for European Technical Approval of Metal Anchors for Use in Concrete (ETAG 001-5),” Part 5: Bonded Anchors, 3rd Amended Apr. 2013.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer