Pozzolanic Effect of Fly Ash with Calcined Lime Sludge

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Pozzolanic Effect of Fly Ash with Calcined Lime Sludge

Author(s): S. Maheswaran, A. Ramachandra Murthy, and G. N. Sakthi Priya

Publication: Materials Journal

Volume: 115

Issue: 6

Appears on pages(s): 925-934

Keywords: calcined lime sludge; fly ash; heat of hydration; hydrothermal reaction; microstructure; pozzolanic effect

DOI: 10.14359/51706847

Date: 11/1/2018

Abstract:
This study examines the pozzolanic effect of calcined lime sludge (CLS), a residual solid waste from the paper industry, and fly ash (FA), a residue generated from thermal power plants. CLS is obtained by calcination of lime sludge (LS) at the temperature 750 to 800°C (1382 to 1472°F) for 2 hours. The formation of calcium silicate hydrate (C-S-H), which is responsible for binding aggregates in concrete, is observed by hydrothermal method for three different proportions of CLS and FA in 1:5, 2:5, and 3:5 ratios at the temperature 220 to 250°C (428 to 482°F) in a hydrothermal cell. The chemical composition, physical properties, morphology, and mineralogical characteristics of the precursor materials and the formed C-S-H are analyzed by using XRF, XRD, SEM/EDS, TG-DSC, and FT-IR. In addition, the hydration behavior of ternary blended cementitious paste at a constant temperature of 30°C (86°F) is evaluated for pozzolanic activity by using ordinary portland cement (OPC), FA, and CLS in three different proportions. The result shows that the premature stiffening during early hydration of ternary blends compared to control. This study leads to potential use of FA and CLS in large quantities in a promising direction.

Related References:

1. ASTM C125-07, “Standard Terminology Relating to Concrete and Concrete Aggregates,” ASTM International, West Conshohocken, PA, 2007, 5 pp.

2. ASTM C311-02, “Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use as a Mineral Admixture in Portland-Cement Concrete,” ASTM International, West Conshohocken, PA, 2002, 9 pp.

3. ASTM C618-03, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2003, 3 pp.

4. Hemalatha, T., and Ramaswamy, A., “A Review on Fly Ash Characteristics-Towards Promoting High Volume Utilization in Developing Sustainable Concrete,” Journal of Cleaner Production, V. 147, 2017, pp. 546-559. doi: 10.1016/j.jclepro.2017.01.114

5. Singh, M., and Siddique, R., “Properties of Concrete Containing High Volumes of Coal Bottom Ash as Fine Aggregate,” Journal of Cleaner Production, V. 91, 2015, pp. 269-278. doi: 10.1016/j.jclepro.2014.12.026

6. Deschner, F.; Frank, W.; Barbara, L.; Sebastian, S.; Peter, S.; Sebastian, D.; Friedlinde, G. N.; and Jürgen, N., “Hydration of Portland Cement with High Replacement by Siliceous Fly Ash,” Cement and Concrete Research, V. 42, No. 10, 2012, pp. 1389-1400. doi: 10.1016/j.cemconres.2012.06.009

7. Malhotra, V. M., and Mehta, P. K., High-Performance, High-Volume Fly Ash Concrete for Building Durable and Sustainable Structures, fourth edition, Supplementary Cementing Materials for Sustainable Development Inc., Ottawa, ON, Canada, 2012, pp. 53-54.

8. Bentz, D. P.; Ferraris, C. F.; De la Varga, I.; Peltz, M. A.; and Winpigler, J., “Mixture Proportioning Options for Improving High Volume Fly Ash Concretes,” International Journal of Pavement Research and Technology, V. 3, No. 5, 2010, pp. 234-240.

9. Tanesi, J.; Bentz, D.; and Ardani, A., “Enhancing High Volume Fly Ash Concretes Using Fine Limestone Powder,” Advances in Green Binder Systems, SP-294, American Concrete Institute, Farmington Hills, MI, 2013, pp. 8.1-8.14.

10. Borsoi, A.; Collepardi, S.; Coppola, L.; Troli, R.; and Collepardi, M., “Effect of Superplasticizer Type on Performance of High-Volume Fly Ash Concrete,” Sixth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, SP-195, American Concrete Institute, Farmington Hills, MI, 2000, pp. 17-28.

11. Justnes, H., and Nygaard, E. C., “The Mechanism of Calcium Nitrate as Set Accelerator for Cement,” Proceedings of 10th International Congress on the Chemistry of Cement, Gothenburg, Sweden, 1997, pp. 2-6.

12. Bentz, D. P.; Ferraris, C. F.; and Kenneth, A. S., “Best Practices Guide for High-Volume Fly Ash Concretes: Assuring Properties and Performance,” Technical Note (NIST TN)-1812, National Institute of Standards and Technology, Gaithersburg, MD, 2013, 66 pp.

13. Neville, A. M., Properties of Concrete, third edition, Prentice Hall, New York, 1985.

14. Edwin, R., and Dunstan Jr., P. E., “How Does Pozzolanic Reaction Make Concrete ‘Green’?” World of Coal Ash (WOCA) Conference, Denver, CO, 2011.

15. IS 3812, “Pulverized Fuel Ash—Specification, Part–1 for Use as Pozzolans in Cement, Mortar and Concrete,” Bureau of Indian Standards, Manak Bhawan, India, 2003, 10 pp.

16. Thomas, M. D. A., “Optimizing the Use of Fly Ash in Concrete,” Portland Cement Association, Skokie, IL, V. 5420, 2007, 24 pp.

17. Rajamma, R.; Ball, R. J.; Tarelho, L. A.; Allen, G. C.; Labrincha, J. A.; and Ferreira, V. M., “Characterization and Use of Biomass Fly Ash in Cement-Based Materials,” Journal of Hazardous Materials, V. 172, No. 2-3, 2009, pp. 1049-1060. doi: 10.1016/j.jhazmat.2009.07.109

18. Hemalatha, T.; Mapa, M.; George, N.; and Sasmal, S., “Physico-Chemical and Mechanical Characterization of High-Volume Fly Ash Incorporated and Engineered Cement System Towards Developing Greener Cement,” Journal of Cleaner Production, V. 125, 2016, pp. 268-281. doi: 10.1016/j.jclepro.2016.03.118

19. U. S. Green Building Council, Leadership in Energy and Environmental Design—Reference Guide, Version 4, Washington, DC, 2013, 49 pp.

20. Malhotra, V. M., “Making Concrete ‘Greener’ with Fly Ash,” Concrete International, V. 21, No. 5, May 1999, pp. 61-66.

21. Qian, G.; Cao, Y.; Chui, P.; and Tay, J., “Utilization of MSWI Fly Ash for Stabilization/Solidification of Industrial Waste Sludge,” Journal of Hazardous Materials, V. 129, No. 1, 2006, pp. 274-281. doi: 10.1016/j.jhazmat.2005.09.003

22. An, J.; Kim, J.; and Nam, B. H., “Investigation on Impacts of Municipal Solid Waste Incineration Bottom Ash on Cement Hydration,” ACI Materials Journal, V. 114, No. 5, Sept.-Oct. 2017, pp. 701-711.

23. de Rojas, M. S.; Frías, M.; Sabador, E.; Medina, C.; Asensio, E.; and Rivera, J., “Reuse of Ceramic Industry Sludge as a Component in Cement-Based Materials,” 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete, SP-320, American Concrete Institute, Farmington Hills, MI, 2017, pp. 4-1.

24. Sánchez Berriel, S.; Favier, A.; Rosa Domínguez, E.; Sánchez Machado, I. R.; Heierli, U.; Scrivener, K.; Martirena Hernández, F.; and Habert, G., “Assessing the Environmental and Economic Potential of Limestone Calcined Clay Cement in Cuba,” Journal of Cleaner Production, V. 124, 2016, pp. 361-369. doi: 10.1016/j.jclepro.2016.02.125

25. Pavlík, Z.; Fořt, J.; Záleská, M.; Pavlíková, M.; Trník, A.; Medved, I.; Keppert, M.; Koutsoukos, P. G.; and Černý, R., “Energy-Efficient Thermal Treatment of Sewage Sludge for its Application in Blended Cements,” Journal of Cleaner Production, V. 112, 2016, pp. 409-419. doi: 10.1016/j.jclepro.2015.09.072

26. Raghavendra, T.; Sunil, M.; and Udayashankar, B. C., “Controlled Low-Strength Materials Using Bagasse Ash and Fly Ash,” ACI Materials Journal, V. 113, No. 4, July-Aug. 2016, pp. 447-457. doi: 10.14359/51688987

27. Technical Report -POSP/103/2006-2007, Assessment of Utilization of Industrial Solid Wastes in Cement Manufacturing e Central Pollution Control Board, Government of India, New Delhi, 2007, 40 pp.

28. Hart, M. L.; Shakoor, A.; and Wilson, T. P., “Characterization of Lime Sludge for Engineering Applications,” Waste Management, New York, NY, V. 13, No. 1, 1993, pp. 55-63. doi: 10.1016/0956-053X(93)90034-T

29. Maheswaran, S.; Ramesh Kumar, V.; Bhuvaneshwari, B.; Palani, G. S.; and Iyer, N. R., “Studies on Lime Sludge for Partial Replacement of Cement,” Applied Mechanics and Materials, V. 71, No. 78, 2011, pp. 1015-1019. doi: 10.4028/www.scientific.net/AMM.71-78.1015

30. da Luz Garcia, M., and Sousa-Coutinho, J., “Grits and Dregs for Cement Replacement—Preliminary Studies,” Proceedings of the 11th International Conference on Non-Conventional Materials and Technologies, Faculdade de Engenharia do Porto, Universidade do Porto, Bath, UK, V. 6, 2009, pp. 1-9.

31. Rodríguez, O.; Frías, M.; and de Rojas, M., “Influence of the Calcined Paper Sludge on the Development of Hydration Heat in Blended Cement Mortars,” Journal of Thermal Analysis and Calorimetry, V. 92, No. 3, 2008, pp. 865-871. doi: 10.1007/s10973-007-8270-x

32. Vigil de la Villa, R.; Frías, M.; Sánchez de Rojas, M. I.; Vegas, I.; and García, R., “Mineralogical and Morphological Changes of Calcined Paper Sludge at Different Temperatures and Retention in Furnace,” Applied Clay Science, V. 36, No. 4, 2007, pp. 279-286. doi: 10.1016/j.clay.2006.10.001

33. Maheswaran, S.; Kalaiselvam, S.; Saravana Karthikeyan, S. K. S.; Kokila, C.; and Palani, G. S., “β-Belite Cements (β-Dicalcium Silicate) Obtained from Calcined Lime Sludge and Silica Fume,” Cement and Concrete Composites, V. 66, 2016, pp. 57-65. doi: 10.1016/j.cemconcomp.2015.11.008

34. Donatello, S.; Tyrer, M.; and Cheeseman, C. R., “Comparison of Test Methods to Assess Pozzolanic Activity,” Cement and Concrete Composites, V. 32, No. 2, 2010, pp. 121-127. doi: 10.1016/j.cemconcomp.2009.10.008

35. Tironi, A.; Trezza, M. A.; Scian, A. N.; and Irassar, E. F., “Assessment of Pozzolanic Activity of Different Calcined Clays,” Cement and Concrete Composites, V. 37, 2013, pp. 319-327. doi: 10.1016/j.cemconcomp.2013.01.002

36. Cordeiro, G. C., and Sales, C. P., “Influence of Calcining Temperature on the Pozzolanic Characteristics of Elephant Grass Ash,” Cement and Concrete Composites, V. 73, 2016, pp. 98-104. doi: 10.1016/j.cemconcomp.2016.07.008

37. Pereira-de-Oliveira, L. A.; Castro-Gomes, J. P.; and Santos, P. M., “The Potential Pozzolanic Activity of Glass and Red-Clay Ceramic Waste as Cement Mortars Components,” Construction and Building Materials, V. 31, 2012, pp. 197-203. doi: 10.1016/j.conbuildmat.2011.12.110

38. Kılıç, A., and Sertabipoğlu, Z., “Effect of Heat Treatment on Pozzolanic Activity of Volcanic Pumice Used as Cementitious Material,” Cement and Concrete Composites, V. 57, 2015, pp. 128-132. doi: 10.1016/j.cemconcomp.2014.12.006

39. Cordeiro, G. C.; Toledo Filho, R. D.; Tavares, L. M.; Fairbairn, E. D. M. R.; and Hempel, S., “Influence of Particle Size and Specific Surface Area on the Pozzolanic Activity of Residual Rice Husk Ash,” Cement and Concrete Composites, V. 33, No. 5, 2011, pp. 529-534. doi: 10.1016/j.cemconcomp.2011.02.005

40. Janjaturaphan, S., and Wansom, S., “Pozzolanic Activity of Industrial Sugar Cane Bagasse Ash,” Warasan Technology Suranaree, V. 17, 2010, pp. 349-357.

41. Bahurudeen, A., and Santhanam, M., “Influence of Different Processing Methods on the Pozzolanic Performance of Sugarcane Bagasse Ash,” Cement and Concrete Composites, V. 56, 2015, pp. 32-45. doi: 10.1016/j.cemconcomp.2014.11.002

42. Mostafa, N. Y., and Brown, P. W., “Heat of Hydration of High Reactive Pozzolans in Blended Cements: Isothermal Conduction Calorimetry,” Thermochimica Acta, V. 435, No. 2, 2005, pp. 162-167. doi: 10.1016/j.tca.2005.05.014

43. Donatello, S.; Freeman-Pask, A.; Tyrer, M.; and Cheeseman, C. R., “Effect of Milling and Acid Washing on the Pozzolanic Activity of Incinerator Sewage Sludge Ash,” Cement and Concrete Composites, V. 32, No. 1, 2010, pp. 54-61. doi: 10.1016/j.cemconcomp.2009.09.002

44. ASTM C618-8a, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2009, 4 pp.

45. IS 12269-1987, “Specification for 53 Grade Ordinary Portland Cement,” Bureau of Indian Standards, Manak Bhawan, India, 1987, 11 pp.

46. IS 4031 (Part I and II), “Method of Physical Tests for Hydraulic Cement,” Bureau of Indian Standards, Manak Bhawan, India, 1998, 4 pp.

47. Whitfield, P. S., and Mitchell, L. D., “Quantitative Rietveld Analysis of the Amorphous Content in Cements and Clinkers,” Journal of Materials Science, V. 38, No. 21, 2003, pp. 4415-4421. doi: 10.1023/A:1026363906432

48. Richardson, I. G., “Tobermorite/Jennite-and Tobermorite/Calcium Hydroxide-Based Models for the Structure of CSH: Applicability to Hardened Pastes of Tricalcium Silicate, β-Dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-Furnace Slag, Metakaolin, or Silica Fume,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1733-1777. doi: 10.1016/j.cemconres.2004.05.034

49. Manzano, H.; Ayuela, A.; and Dolado, J. S., “On the Formation of Cementitious C–S–H Nanoparticles,” Journal of Computer-Aided Materials Design, V. 14, No. 1, 2007, pp. 45-51. doi: 10.1007/s10820-006-9030-0

50. Bhat, P. A., and Debnath, N. C., “Theoretical and Experimental Study of Structures and Properties of Cement Paste: The Nanostructural Aspects of C–S–H,” Journal of Physics and Chemistry of Solids, V. 72, No. 8, 2011, pp. 920-933. doi: 10.1016/j.jpcs.2011.05.001

51. Dambrauskas, T.; Baltakys, K.; Škamat, J.; and Kudžma, A., “Hydration Peculiarities of High Basicity Calcium Silicate Hydrate Samples,” Journal of Thermal Analysis and Calorimetry, V. 131, No. 6, 2017, pp. 1-9. doi: 10.1007/s10973-017-6320-6

52. Ramachandran, V. S., Applications of Differential Thermal Analysis in Cement Chemistry, Chemical Publishing Company Inc., New York, 1969, 248 pp.

53. Maheswaran, S.; Iyer, N. R.; Palani, G. S.; Pandi, R. A.; Dikar, D. D.; and Kalaiselvam, S., “Effect of High Temperature on the Properties of Ternary Blended Cement Pastes and Mortars,” Journal of Thermal Analysis and Calorimetry, V. 122, No. 2, 2015, pp. 775-786. doi: 10.1007/s10973-015-4817-4

54. Medina, G.; Medina, J. M.; del Bosque, I. F. S.; Frías, M.; de Rojas, M. I. S.; and Medina, C., “New Additions for the Design of Eco-Efficient Cements. Analysis of Pozzolanic Reaction Kinetics,” 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete, SP-320, American Concrete Institute, Farmington Hills, MI, 2017, pp. 9.1-9.14.

55. Yu, P.; Kirkpatrick, R. J.; Poe, B.; McMillan, P. F.; and Cong, X., “Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far- Infrared Spectroscopy,” Journal of the American Ceramic Society, V. 82, No. 3, 1999, pp. 742-748. doi: 10.1111/j.1151-2916.1999.tb01826.x

56. Fernández Carrasco, L.; Torrens Martín, D.; Morales, L. M.; and Martínez Ramírez, S., “Infrared Spectroscopy in the Analysis of Building and Construction Materials,” InTech, 2012, pp. 357-372.

57. Millogo, Y.; Hajjaji, M.; and Ouedraogo, R., “Microstructure and Physical Properties of Lime-Clayey Adobe Bricks,” Construction and Building Materials, V. 22, No. 12, 2008, pp. 2386-2392. doi: 10.1016/j.conbuildmat.2007.09.002

58. He, Y.; Zhao, X.; Lu, L.; Struble, L. J.; and Hu, S., “Effect of C/S Ratio on Morphology and Structure of Hydrothermally Synthesized Calcium Silicate Hydrate,” Journal of Wuhan University of Technology—Materials Science Editor, V. 26, No. 4, 2011, pp. 770-773.

59. Bullard, J. W.; Jennings, H. M.; Livingston, R. A.; Nonat, A.; Scherer, G. W.; Schweitzer, J. S.; Scrivener, K. L.; and Thomas, J. J., “Mechanisms of Cement Hydration,” Cement and Concrete Research, V. 41, No. 12, 2011, pp. 1208-1223. doi: 10.1016/j.cemconres.2010.09.011

60. Langan, B. W.; Weng, K.; and Ward, M. A., “Effect of Silica Fume and Fly Ash on Heat of Hydration of Portland Cement,” Cement and Concrete Research, V. 32, No. 7, 2002, pp. 1045-1051. doi: 10.1016/S0008-8846(02)00742-1

61. Makar, J. M.; Chan, G. W.; and Esseghaier, K. Y., “A Peak in the Hydration Reaction at the End of Cement Induction Period,” Journal of Materials Science, V. 42, No. 4, 2007, pp. 1388-1392. doi: 10.1007/s10853-006-1427-3

62. Maheswaran, S.; Kalaiselvam, S.; Palani, G. S.; and Sasmal, S., “Investigations on the Early Hydration Properties of Synthesized β-Belites Blended Cement Pastes,” Journal of Thermal Analysis and Calorimetry, V. 125, No. 1, 2016, pp. 53-64. doi: 10.1007/s10973-016-5386-x

63. Hongen, Z.; Feng, J.; Qingyuan, W.; Ling, T.; and Xiaoshuang, S., “Influence of Cement on Properties of Fly-Ash-Based Concrete,” ACI Materials Journal, V. 114, No. 5, Sept.-Oct. 2017, pp. 745-753.

64. Jaafri, R.; Aboulayt, A.; Alam, S. Y.; Roziere, E.; and Loukili, A., “Influence of Lime on the Properties of Cement-Based Materials,” 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete, SP-320, American Concrete Institute, Farmington Hills, MI, 2017, pp. 1-12.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer