Axial Compressive Behavior of Steel Equal Angle Section-Reinforced Square High-Strength Concrete Column

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Axial Compressive Behavior of Steel Equal Angle Section-Reinforced Square High-Strength Concrete Column

Author(s): Ayoob A. Ibrahim, M. Neaz Sheikh, and Muhammad N. S. Hadi

Publication: Structural Journal

Volume: 115

Issue: 5

Appears on pages(s): 1431-1442

Keywords: axial load; buckling; columns; ductility; reinforced concrete; steel equal angle; tie spacing

DOI: 10.14359/51702375

Date: 9/1/2018

Abstract:
A new method of reinforcing concrete columns with steel equal angle (SEA) sections has been investigated. A total of 12 square high-strength concrete (HSC) column specimens (with 210 mm [8.26 in.] sides and 600 mm [23.62 in.] height) reinforced longitudinally with either steel bars or SEA sections were cast and tested. The lateral tie spacing of specimens varied from 50 to 400 mm (1.96 to 15.74 in.). The influences of the type of longitudinal reinforcement and the spacing of lateral ties on the behavior of HSC specimens under axial compression were investigated. Experimental results showed that the use of the SEA sections as longitudinal reinforcements in HSC column specimens led to significant improvements in the axial load-carrying capacity and ductility compared to the corresponding HSC column specimens reinforced longitudinally with steel bars.

Related References:

1. Mirza, S. A.; Hyttinen, V.; and Hyttinen, E., “Physical Tests and Analyses of Composite Steel-Concrete Beam-Columns,” Journal of Structural Engineering, ASCE, V. 122, No. 11, 1996, pp. 1317-1326. doi: 10.1061/(ASCE)0733-9445(1996)122:11(1317)

2. Ellobody, E., and Young, B., “Numerical Simulation of Concrete Encased Steel Composite Columns,” Journal of Constructional Steel Research, V. 67, No. 2, 2011, pp. 211-222. doi: 10.1016/j.jcsr.2010.08.003

3. Kim, C. S.; Park, H. G.; Chung, K. S.; and Choi, I. R., “Eccentric Axial Load Testing for Concrete-Encased Steel Columns Using 800 MPa Steel and 100 MPa Concrete,” Journal of Structural Engineering, ASCE, V. 138, No. 8, 2012, pp. 1019-1031. doi: 10.1061/(ASCE)ST.1943-541X.0000533

4. Hunaiti, Y.; Fattah, B. A.; and Fattah, A. B., “Design Considerations of Partially Encased Composite Columns,” Proceedings of the ICE-Structures and Buildings, V. 104, No. 1, 1994, pp. 75-82. doi: 10.1680/istbu.1994.25681

5. Leite, L.; Bonet, J.; Pallarés, L.; Miguel, P. F.; and Fernández-Prada, M. A., “Experimental Research on High Strength Concrete Slender Columns Subjected to Compression and Uniaxial Bending with Unequal Eccentricities at the Ends,” Engineering Structures, V. 48, 2013, pp. 220-232. doi: 10.1016/j.engstruct.2012.07.039

6. Campione, G.; Monaco, A.; and Minafò, G., “Shear Strength of High-Strength Concrete Beams: Modeling and Design Recommendations,” Engineering Structures, V. 69, 2014, pp. 116-122. doi: 10.1016/j.engstruct.2014.02.029

7. Hadi, M. N. S.; Balanji, E. K.; and Sheikh, M. N., “Behavior of Steel Fiber-Reinforced High-Strength Concrete Columns under Different Loads,” ACI Structural Journal, V. 114, No. 4, July-Aug. 2017, pp. 815-826. doi: 10.14359/51689781

8. Sheikh, S. A.; Shah, D. V.; and Khoury, S. S., “Confinement of High-Strength Concrete Columns,” ACI Structural Journal, V. 91, No. 1, Jan.-Feb. 1994, pp. 100-111.

9. El-Tawil, S., and Deierlein, G. G., “Strength and Ductility of Concrete Encased Composite Columns,” Journal of Structural Engineering, ASCE, V. 125, No. 9, 1999, pp. 1009-1019. doi: 10.1061/(ASCE)0733-9445(1999)125:9(1009)

10. Li, B., and Park, R., “Confining Reinforcement for High-Strength Concrete Columns,” ACI Structural Journal, V. 101, No. 3, May-June 2004, pp. 314-324.

11. Ho, J.; Lam, J.; and Kwan, A., “Effectiveness of Adding Confinement for Ductility Improvement of High-Strength Concrete Columns,” Engineering Structures, V. 32, No. 3, 2010, pp. 714-725. doi: 10.1016/j.engstruct.2009.11.017

12. Awati, M., and Khadiranaikar, R., “Behavior of Concentrically Loaded High Performance Concrete Tied Columns,” Engineering Structures, V. 37, 2012, pp. 76-87. doi: 10.1016/j.engstruct.2011.12.040

13. Woods, J. M.; Kiousis, P. D.; Ehsani, M. R.; Saadatmanesh, H.; and Fritz, W., “Bending Ductility of Rectangular High Strength Concrete Columns,” Engineering Structures, V. 29, No. 8, 2007, pp. 1783-1790. doi: 10.1016/j.engstruct.2006.09.024

14. Samani, A. K.; Attard, M. M.; and Foster, S. J., “Ductility in Concentrically Loaded Reinforced Concrete Columns,” Australian Journal of Structural Engineering, V. 16, No. 3, 2015, pp. 237-250. doi: 10.1080/13287982.2015.1092688

15. Yang, K. H., and Kim, W. W., “Axial Compression Performance of Reinforced Concrete Short Columns with Supplementary V-Shaped Ties,” ACI Structural Journal, V. 113, No. 6, Nov.-Dec. 2016, pp. 1347-1356. doi: 10.14359/51689159

16. Razvi, S. R., and Saatcioglu, M., “Strength and Deformability of Confined High-Strength Concrete Columns,” ACI Structural Journal, V. 91, No. 6, Nov.-Dec. 1994, pp. 678-687.

17. Shin, H. O.; Yoon, Y. S.; Cook, W. D.; and Mitchell, D., “Enhancing the Confinement of Ultra-High-Strength Concrete Columns Using Headed Crossties,” Engineering Structures, V. 127, 2016, pp. 86-100. doi: 10.1016/j.engstruct.2016.08.024

18. Foster, S. J., “Design and Detailing of High Strength Concrete Columns,” UNICIV Report No. R-375, University of New South Wales, Sydney, NSW, Australia, 1999.

19. Popovic, D.; Hancock, G. J.; and Rasmussen, K. J. R., “Axial Compression Tests of Cold-Formed Angles,” Journal of Structural Engineering, ASCE, V. 125, No. 5, 1999, pp. 515-523. doi: 10.1061/(ASCE)0733-9445(1999)125:5(515)

20. Young, B., “Tests and Design of Fixed-Ended Cold-Formed Steel Plain Angle Columns,” Journal of Structural Engineering, ASCE, V. 130, No. 12, 2004, pp. 1931-1940. doi: 10.1061/(ASCE)0733-9445(2004)130:12(1931)

21. Ellobody, E., and Young, B., “Behavior of Cold-Formed Steel Plain Angle Columns,” Journal of Structural Engineering, ASCE, V. 131, No. 3, 2005, pp. 457-466. doi: 10.1061/(ASCE)0733-9445(2005)131:3(457)

22. AS 1012.3.1-14, “Methods of Testing Concrete—Method 3.1: Determination of Properties Related to the Consistency of Concrete—Slump Test,” Standards Australia, Sydney, NSW, Australia, 2014.

23. AS 1012.9-99, “Methods of Testing Concrete, Determination of the Compressive Strength of Concrete Specimens,” Standards Australia, Sydney, NSW, Australia, 1999.

24. AS 1391-07, “Metallic Materials-Tensile Testing at Ambient Temperature,” Standards Australia, Sydney, NSW, Australia, 2007.

25. OneSteel, “Know Your Steel: Steel Reference Guide,” Sydney, NSW, Australia, 2010, http://studylib.net/doc/8118808/know-your-steel. (last accessed June 12, 2018)

26. Hadi, M. N. S., and Youssef, J., “Experimental Investigation of GFRP-Reinforced and GFRP-Encased Square Concrete Specimens under Axial and Eccentric Load, and Four-Point Bending Test,” Journal of Composites for Construction, V. 93, 2016, pp. 1-16.

27. Hadi, M. N. S.; Khan, Q. S.; and Sheikh, M. N., “Axial and Flexural Behavior of Unreinforced and FRP Bar Reinforced Circular Concrete Filled FRP Tube Columns,” Construction and Building Materials, V. 122, 2016, pp. 43-53. doi: 10.1016/j.conbuildmat.2016.06.044

28. Pessiki, S., and Pieroni, A., “Axial Load Behavior of Large-Scale Spirally-Reinforced High-Strength Concrete Columns,” ACI Structural Journal, V. 94, No. 3, May-June 1997, pp. 304-313.

29. Sheikh, M. N., and Legeron, F., “Performance Based Seismic Assessment of Bridges Designed According to Canadian Highway Bridge Design Code,” Canadian Journal of Civil Engineering, V. 41, No. 9, 2014, pp. 777-787. doi: 10.1139/cjce-2013-0025

30. Mander, J. B.; Priestley, M. J.; and Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, V. 114, No. 8, 1988, pp. 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)

31. Campione, G., and Minafò, G., “Compressive Behavior of Short High-Strength Concrete Columns,” Engineering Structures, V. 32, No. 9, 2010, pp. 2755-2766. doi: 10.1016/j.engstruct.2010.04.045

32. AS 3600-09, “Concrete Structures,” Standards Australia, Sydney, NSW, Australia, 2009.

33. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.

34. Saatcioglu, M., and Razvi, S. R., “High-Strength Concrete Columns with Square Sections under Concentric Compression,” Journal of Structural Engineering, ASCE, V. 124, No. 12, 1998, pp. 1438-1447. doi: 10.1061/(ASCE)0733-9445(1998)124:12(1438)

35. Ozbakkaloglu, T., and Saatcioglu, M., “Rectangular Stress Block for High-Strength Concrete,” ACI Structural Journal, V. 101, No. 4, July-Aug. 2004, pp. 475-483.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer