Title:
Thermodynamic Investigation of Allowable Admixed Chloride Limits in Concrete
Author(s):
Vahid Jafari Azad, Prannoy Suraneni, David Trejo, W. Jason Weiss, and O. Burkan Isgor
Publication:
Materials Journal
Volume:
115
Issue:
5
Appears on pages(s):
727-738
Keywords:
allowable admixed chloride limits; chloride binding; Monte Carlo analysis; supplementary cementitious materials; thermodynamic modeling
DOI:
10.14359/51702349
Date:
9/1/2018
Abstract:
A thermodynamic modeling-based Monte Carlo analysis was conducted to investigate the effect of supplementary cementitious material (SCM) replacement level and reactivity on chemical binding of admixed chlorides and pore solution composition in ordinary portland cement (OPC) + SCM systems. Specifically, the validity of using total cementitious materials content, instead of cement content, as the basis for allowable admixed chloride limits was evaluated. The simulations showed that variability in the results was due to the variability of the compositions and reactivities of the cementitious materials. Even at low replacement levels, for some SCM compositions and reactivities, corrosion initiation was possible at admixed chloride levels within typical allowable limits. It was concluded that allowable admixed chloride limits can be prescribed in terms of cementitious material content with limits on SCM replacement levels. However, highly reactive SCMs might still make embedded reinforcement vulnerable to corrosion even when these SCM replacement limits are used for calculating maximum allowable chloride concentrations in concrete mixtures.
Related References:
1. Angst, U.; Elsener, B.; Larsen, C. K.; and Vennesland, Ø., “Critical Chloride Content in Reinforced Concrete—A Review,” Cement and Concrete Research, V. 39, No. 12, 2009, pp. 1122-1138. doi: 10.1016/j.cemconres.2009.08.006
2. Li, L., and Sagues, A., “Chloride Corrosion Threshold of Reinforcing Steel in Alkaline Solutions—Open-Circuit Immersion Tests,” Corrosion, V. 57, No. 1, 2001, pp. 19-28. doi: 10.5006/1.3290325
3. Martin-Pérez, B.; Zibara, H.; Hooton, R.; and Thomas, M., “A Study of the Effect of Chloride Binding on Service Life Predictions,” Cement and Concrete Research, V. 30, No. 8, 2000, pp. 1215-1223. doi: 10.1016/S0008-8846(00)00339-2
4. Ghods, P.; Isgor, O. B.; Mcrae, G. A.; and Gu, G. P., “Electrochemical Investigation of Chloride-Induced Depassivation of Black Steel Reinforcing Bar under Simulated Service Conditions,” Corrosion Science, V. 52, No. 5, 2010, pp. 1649-1659. doi: 10.1016/j.corsci.2010.02.016
5. de Viedma, P. G.; Castellote, M.; and Andrade, C., “Comparison between Several Methods for Determining the Depassivation Threshold Value for Corrosion Onset,” Journal de Physique. IV, V. 136, Nov. 2006, pp. 79-88. doi: 10.1051/jp4:2006136009
6. Liu, T., and Weyers, R. W., “Modeling the Dynamic Corrosion Process in Chloride Contaminated Concrete Structures,” Cement and Concrete Research, V. 28, No. 3, 1998, pp. 365-379. doi: 10.1016/S0008-8846(98)00259-2
7. Trejo, D., and Monteiro, P. J., “Corrosion Performance of Conventional (ASTM A615) and Low-Alloy (ASTM A706) Reinforcing Bars Embedded in Concrete and Exposed to Chloride Environments,” Cement and Concrete Research, V. 35, No. 3, 2005, pp. 562-571. doi: 10.1016/j.cemconres.2004.06.004
8. Poursaee, A.; Laurent, A.; and Hansson, C. M., “Corrosion of Steel Bars in OPC Mortar Exposed to NaCl, MgCl2, and CaCl2: Macro- and Micro-Cell Corrosion Perspective,” Cement and Concrete Research, V. 40, No. 3, 2010, pp. 426-430. doi: 10.1016/j.cemconres.2009.09.029
9. Ghods, P.; Isgor, O. B.; Bensebaa, F.; and Kingston, D., “Angle-Resolved XPS Study of Carbon Steel Passivity and Chloride-Induced Depassivation in Simulated Concrete Pore Solution,” Corrosion Science, V. 58, May, 2012, pp. 159-167. doi: 10.1016/j.corsci.2012.01.019
10. Ghods, P.; Isgor, O. B.; Carpenter, G. J. C.; Li, J.; McRae, G. A.; and Gu, G. P., “Nano-Scale Study of Passive Films and Chloride-Induced Depassivation of Carbon Steel Reinforcing bar in Simulated Concrete Pore Solutions Using FIB/TEM,” Cement and Concrete Research, V. 47, May 2013, pp. 55-68. doi: 10.1016/j.cemconres.2013.01.009
11. Gunay, H. B.; Ghods, P.; Isgor, O. B.; Carpenter, G. J. C.; and Wu, X. H., “Characterization of Atomic Structure of Oxide Films on Carbon Steel in Simulated Concrete Pore Solutions Using EELS,” Applied Surface Science, V. 274, June 2013, pp. 195-202. doi: 10.1016/j.apsusc.2013.03.014
12. Trejo, D.; Isgor, O. B.; and Weiss, J. W., “The Allowable Admixed Chloride Conundrum,” Concrete International, V. 38, No. 5, May 2016, pp. 35-42.
13. Angst, U.; Elsener, B.; Larsen, C. K.; and Vennesland, O., “Critical Chloride Content in Reinforced Concrete—A Review,” Cement and Concrete Research, V. 39, No. 12, 2009, pp. 1122-1138. doi: 10.1016/j.cemconres.2009.08.006
14. Andrade, C., and Page, C. L., “Pore Solution Chemistry and Corrosion in Hydrated Cement Systems Containing Chloride Salts—A Study of Cation Specific Effects,” British Corrosion Journal, V. 21, No. 1, 1986, pp. 49-54. doi: 10.1179/000705986798272415
15. Ghods, P.; Isgor, O. B.; Mcrae, G.; and Miller, T., “The Effect of Concrete Pore Solution Composition on the Quality of Passive Oxide Films on Black Steel Reinforcement,” Cement and Concrete Composites, V. 31, No. 1, 2009, pp. 2-11. doi: 10.1016/j.cemconcomp.2008.10.003
16. Angst, U. M.; Geiker, M. R.; Michel, A.; Gehlen, C.; Wong, H.; Isgor, O. B.; Elsener, B.; Hansson, C. M.; François, R.; Hornbostel, K.; Polder, R.; Alonso, M. C.; Sanchez, M.; Correia, M. J.; Criado, M.; Sagüés, A.; and Buenfeld, N., “The Steel-Concrete Interface,” Materials and Structures, V. 50, No. 2, 2017, p. 1-10. doi: 10.1617/s11527-017-1010-1
17. Florea, M. V. A., and Brouwers, H. J. H., “Chloride Binding Related to Hydration Products, Part I: Ordinary Portland Cement,” Cement and Concrete Research, V. 42, No. 2, 2012, pp. 282-290. doi: 10.1016/j.cemconres.2011.09.016
18. Yuan, Q.; Shi, C. J.; De Schutter, G.; Audenaert, K.; and Deng, D. H., “Chloride Binding of Cement-Based Materials Subjected to External Chloride Environment—A Review,” Construction and Building Materials, V. 23, No. 1, 2009, pp. 1-13. doi: 10.1016/j.conbuildmat.2008.02.004
19. Zibara, H., “Binding of External Chlorides by Cement Pastes,” doctoral thesis, University of Toronto, Toronto, ON, Canada, 2001, 342 pp.
20. Suryavanshi, A. K.; Scantlebury, J. D.; and Lyon, S. B., “Mechanism of Friedel’s Salt Formation in Cements Rich in Tri-Calcium Aluminate,” Cement and Concrete Research, V. 26, No. 5, 1996, pp. 717-727. doi: 10.1016/S0008-8846(96)85009-5
21. Balonis, M., and Glasser, F. P., “The Density of Cement Phases,” Cement and Concrete Research, V. 39, No. 9, 2009, pp. 733-739. doi: 10.1016/j.cemconres.2009.06.005
22. Balonis, M., “The Influence of Inorganic Chemical Accelerators and Corrosion Inhibitors on the Mineralogy of Hydrated Portland Cement Systems,” University of Aberdeen, Aberdeen, UK, 2010, 294 pp.
23. Balonis, M.; Lothenbach, B.; Le Saout, G.; and Glasser, F. P., “Impact of Chloride on the Mineralogy of Hydrated Portland Cement Systems,” Cement and Concrete Research, V. 40, No. 7, 2010, pp. 1009-1022. doi: 10.1016/j.cemconres.2010.03.002
24. Neville, A., Properties of Concrete, Prentice-Hall, San Francisco, CA, 2012, 846 pp.
25. ACI Committee 318, “Building Code for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.
26. Suryavanshi, A., and Swamy, R. N., “Stability of Friedel’s Salt in Carbonated Concrete Structural Elements,” Cement and Concrete Research, V. 26, No. 5, 1996, pp. 729-741. doi: 10.1016/S0008-8846(96)85010-1
27. Shehata, M. H., and Thomas, M. D. A., “The Effect of Fly Ash Composition on the Expansion of Concrete due to Alkali-Silica Reaction,” Cement and Concrete Research, V. 30, No. 7, 2000, pp. 1063-1072. doi: 10.1016/S0008-8846(00)00283-0
28. Aboustait, M.; Kim, T.; Ley, M. T.; and Davis, J. M., “Physical and Chemical Characteristics of Fly Ash Using Automated Scanning Electron Microscopy,” Construction and Building Materials, V. 106, 2016, pp. 1-10. doi: 10.1016/j.conbuildmat.2015.12.098
29. Hogan, F., and Meusel, J., “Evaluation for Durability and Strength Development of a Ground Granulated Blast Furnace Slag,” Cement, Concrete and Aggregates, V. 3, No. 1, 1981, pp. 40-52. doi: 10.1520/CCA10201J
30. Lane, D. S., and Ozyildirum, H. C., “Evaluation of the Effect of Portland Cement Alkali Content, Fly Ash, Ground Slag, and Silica Fume on Alkali-Silica Reactivity,” Cement, Concrete and Aggregates, V. 21, No. 2, 1999, pp. 126-140. doi: 10.1520/CCA10426J
31. Lumley, J. S.; Gollop, R. S.; Moir, G. K.; and Taylor, H. F. W., “Degrees of Reaction of the Slag in Some Blends with Portland Cements,” Cement and Concrete Research, V. 26, No. 1, 1996, pp. 139-151. doi: 10.1016/0008-8846(95)00190-5
32. Thomas, M. D. A.; Scott, A.; Bremner, T.; Bilodeau, A.; and Day, D., “Performance of Slag Concrete in Marine Environment,” ACI Materials Journal, V. 105, No. 6, Nov.-Dec. 2008, pp. 628-634.
33. Bleszynski, R.; Hooton, R. D.; Thomas, M. D. A.; and Rogers, C. A., “Durability of Ternary Blend Concrete with Silica Fume and Blast-Furnace Slag: Laboratory and Outdoor Exposure Site Studies,” ACI Materials Journal, V. 99, No. 5, Sept.-Oct. 2002, pp. 499-508.
34. Roy, D. M., and Idorn, G. M., “Hydration, Structure, and Properties of Blast Furnace Slag Cements, Mortars, and Concrete,” ACI Journal Proceedings, V. 79, No. 6, Nov.-Dec. 1982, pp. 444-457.
35. Laldji, S.; Phithaksounthone, A.; and Tagnit-Hamou, A., “Synergistic Effect between Glass Frit and Blast-Furnace Slag,” ACI Materials Journal, V. 107, No. 1, Jan.-Feb. 2010, pp. 75-79.
36. Thomas, M. D. A., and Innis, F. A., “Effect of Slag on Expansion Due to Alkali Aggregate Reaction in Concrete,” ACI Materials Journal, V. 95, No. 6, Nov.-Dec. 1998, pp. 716-724.
37. Zeng, Q.; Li, K. F.; Fen-Chong, T.; and Dangla, P., “Determination of Cement Hydration and Pozzolanic Reaction Extents for Fly-Ash Cement Pastes,” Construction and Building Materials, V. 27, No. 1, 2012, pp. 560-569. doi: 10.1016/j.conbuildmat.2011.07.007
38. Kocaba, V.; Gallucci, E.; and Scrivener, K. L., “Methods for Determination of Degree of Reaction of Slag in Blended Cement Pastes,” Cement and Concrete Research, V. 42, No. 3, 2012, pp. 511-525. doi: 10.1016/j.cemconres.2011.11.010
39. Jafari Azad, V., and Isgor, O. B., “A Thermodynamic Perspective on Admixed Chloride Limits of Concrete Produced with SCMs,” Chloride Thresholds and Limits for New Construction, SP-308, American Concrete Institute, Farmington Hills, MI, 2016, pp. 1-18.
40. Tennis, P. D., “Chemical and Physical Characteristics of US Hydraulic Cements,” Portland Cement Association, Skokie, IL, 2016, 32 pp.
41. Kulik, D. A.; Wagner, T.; Dmytrieva, S. V.; Kosakowski, G.; Hingerl, F. F.; Chudnenko, K. V.; and Berner, U. R., “GEM-Selektor Geochemical Modeling Package: Revised Algorithm and GEMS3K Numerical Kernel for Coupled Simulation Codes,” Computational Geosciences, V. 17, No. 1, Feb. 2013, pp. 1-24. doi: 10.1007/s10596-012-9310-6
42. Wagner, T.; Kulik, D. A.; Hingerl, F. F.; and Dmytrieva, S. V., “Gem-Selektor Geochemical Modeling Package: TSolMod Library and Data Interface for Multicomponent Phase Models,” Canadian Mineralogist, V. 50, No. 5, 2012, pp. 1173-1195. doi: 10.3749/canmin.50.5.1173
43. Kosakowski, G., and Watanabe, N., “OpenGeoSys-Gem: A Numerical Tool for Calculating Geochemical and Porosity Changes in Saturated and Partially Saturated Media,” Physics and Chemistry of the Earth, V. 70-71, 2014, pp. 138-149. doi: 10.1016/j.pce.2013.11.008
44. Kulik, D. A., and Kersten, M., “Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems: II, End‐Member Stoichiometries of Ideal Calcium Silicate Hydrate Solid Solutions,” Journal of the American Ceramic Society, V. 84, No. 12, 2001, pp. 3017-3026. doi: 10.1111/j.1151-2916.2001.tb01130.x
45. Kulik, D. A., and Kersten, M., “Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems. 4. A Carbonation Model for Zn-Doped Calcium Silicate Hydrate by Gibbs Energy Minimization,” Environmental Science & Technology, V. 36, No. 13, 2002, pp. 2926-2931. doi: 10.1021/es010250v
46. Lothenbach, B., and Winnefeld, F., “Thermodynamic Modelling of the Hydration of Portland Cement,” Cement and Concrete Research, V. 36, No. 2, 2006, pp. 209-226. doi: 10.1016/j.cemconres.2005.03.001
47. Matschei, T.; Lothenbach, B.; and Glasser, F. P., “Thermodynamic Properties of Portland Cement Hydrates in the System CaO-Al2O3-SiO2-CaSO4-CaCO3-H2O,” Cement and Concrete Research, V. 37, No. 10, 2007, pp. 1379-1410. doi: 10.1016/j.cemconres.2007.06.002
48. Lothenbach, B.; Matschei, T.; Moschner, G.; and Glasser, F. P., “Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement,” Cement and Concrete Research, V. 38, No. 1, 2008, pp. 1-18. doi: 10.1016/j.cemconres.2007.08.017
49. Möschner, G.; Lothenbach, B.; Rose, J.; Ulrich, A.; Figi, R.; and Kretzschmar, R., “Solubility of Fe–Ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O),” Geochimica et Cosmochimica Acta, V. 72, No. 1, 2008, pp. 1-18. doi: 10.1016/j.gca.2007.09.035
50. Schmidt, T.; Lothenbach, B.; Romer, M.; Scrivener, K.; Rentsch, D.; and Figi, R., “A Thermodynamic and Experimental Study of the Conditions of Thaumasite Formation,” Cement and Concrete Research, V. 38, No. 3, 2008, pp. 337-349. doi: 10.1016/j.cemconres.2007.11.003
51. Möschner, G.; Lothenbach, B.; Winnefeld, F.; Ulrich, A.; Figi, R.; and Kretzschmar, R., “Solid Solution between Al-ettringite and Fe-ettringite (Ca6[Al1–xFex(OH)6]2(SO4)3·26H2O),” Cement and Concrete Research, V. 39, No. 6, 2009, pp. 482-489. doi: 10.1016/j.cemconres.2009.03.001
52. Kulik, D. A., “Improving the Structural Consistency of C-S-H Solid Solution Thermodynamic Models,” Cement and Concrete Research, V. 41, No. 5, 2011, pp. 477-495. doi: 10.1016/j.cemconres.2011.01.012
53. Dilnesa, B.; Lothenbach, B.; Le Saout, G.; Renaudin, G.; Mesbah, A.; Filinchuk, Y.; Wichser, A.; and Wieland, E., “Iron in Carbonate Containing AFm Phases,” Cement and Concrete Research, V. 41, No. 3, 2011, pp. 311-323. doi: 10.1016/j.cemconres.2010.11.017
54. Lothenbach, B.; Pelletier-Chaignat, L.; and Winnefeld, F., “Stability in the System CaO-Al2O3-H2O,” Cement and Concrete Research, V. 42, No. 12, 2012, pp. 1621-1634. doi: 10.1016/j.cemconres.2012.09.002
55. Dilnesa, B. Z.; Lothenbach, B.; Renaudin, G.; Wichser, A.; and Wieland, E., “Stability of Monosulfate in the Presence of Iron,” Journal of the American Ceramic Society, V. 95, No. 10, 2012, pp. 3305-3316. doi: 10.1111/j.1551-2916.2012.05335.x
56. Dilnesa, B. Z.; Lothenbach, B.; Renaudin, G.; Wichser, A.; and Kulik, D., “Synthesis and Characterization of Hydrogarnet Ca3(AlxFe1–x)2(SiO4)y(OH)4(3–y),” Cement and Concrete Research, V. 59, 2014, pp. 96-111. doi: 10.1016/j.cemconres.2014.02.001
57. Parrot, L., and Killoh, D., “Prediction of Cement Hydration,” British Ceramic Proceedings, V. 35, 1984, pp. 41-53.
58. De Weerdt, K.; Colombo, A.; Coppola, L.; Justnes, H.; and Geiker, M., “Impact of the Associated Cation on Chloride Binding of Portland Cement Paste,” Cement and Concrete Research, V. 68, 2015, pp. 196-202. doi: 10.1016/j.cemconres.2014.01.027
59. Hong, S. Y., and Glasser, F. P., “Alkali Binding in Cement Pastes, Part I. The C-S-H Phase,” Cement and Concrete Research, V. 29, No. 12, 1999, pp. 1893-1903. doi: 10.1016/S0008-8846(99)00187-8
60. Beaudoin, J. J.; Ramachandran, V. S.; and Feldman, R. F., “Interaction of Chloride and C-S-H,” Cement and Concrete Research, V. 20, No. 6, 1990, pp. 875-883. doi: 10.1016/0008-8846(90)90049-4
61. ACI Committee 222, “Protection of Metals in Concrete Against Corrosion (ACI 222R-01),” American Concrete Institute, Farmington Hills, MI, 2001, 41 pp.