Behavior of Ambient-Cured Geopolymer Concrete Columns under Different Loads

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Behavior of Ambient-Cured Geopolymer Concrete Columns under Different Loads

Author(s): Nabeel A. Farhan, M. Neaz Sheikh, and Muhammad N. S. Hadi

Publication: Structural Journal

Volume: 115

Issue: 5

Appears on pages(s): 1419-1429

Keywords: ambient curing; circular columns; ductility; geopolymer concrete; steel fiber

DOI: 10.14359/51702250

Date: 9/1/2018

Abstract:
This paper investigates the behavior of ambient cured geopolymer concrete columns under different loading conditions. Sixteen circular concrete column specimens 150 mm (5.9 in.) in diameter and 600 mm (23.62 in.) high were tested. The effects of the addition of steel fibers and the loading conditions (concentric, eccentric axial, and four-point bending) on the performance of the geopolymer concrete specimens were investigated. It was found that the behavior of geopolymer concrete specimens without steel fiber was similar to the behavior of ordinary portland-cement concrete specimens under different loading conditions. The addition of micro steel fibers into geopolymer concrete enhanced the strength and the addition of macro steel fibers into geopolymer concrete enhanced the ductility of the specimens under concentric and eccentric axial loads and four-point bending.

Related References:

1. Mehta, P. K., “High-Performance, High-Volume Fly Ash Concrete for Sustainable Development,” Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Iowa State University Ames, IA, 2004, pp. 3-14.

2. Rangan, B. V., “Fly Ash-Based Geopolymer Concrete,” Research Report GC 4, Engineering Faculty, Curtin University of Technology, Perth, Australia, 2008, 44 pp.

3. Wallah, S., “Creep Behaviour of Fly Ash-Based Geopolymer Concrete,” Civil Engineering Dimension, V. 12, No. 2, 2010, pp. 73-78.

4. Gencel, O.; Koksal, F.; Ozel, C.; and Brostow, W., “Combined Effects of Fly Ash and Waste Ferrochromium on Properties of Concrete,” Construction and Building Materials, V. 29, 2012, pp. 633-640. doi: 10.1016/j.conbuildmat.2011.11.026

5. Duxson, P.; Fernández-Jiménez, A.; Provis, J. L.; Lukey, G. C.; Palomo, A.; and Van Deventer, J., “Geopolymer Technology: The Current State of the Art,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 2917-2933. doi: 10.1007/s10853-006-0637-z

6. Sofi, M.; Van Deventer, J.; Mendis, P.; and Lukey, G., “Engineering Properties of Inorganic Polymer Concretes (IPCs),” Cement and Concrete Research, V. 37, No. 2, 2007, pp. 251-257. doi: 10.1016/j.cemconres.2006.10.008

7. Olivia, M., and Nikraz, H., “Properties of Fly Ash Geopolymer Concrete Designed by Taguchi Method,” Materials & Design, V. 36, 2012, pp. 191-198. doi: 10.1016/j.matdes.2011.10.036

8. Natali, A.; Manzi, S.; and Bignozzi, M., “Novel Fiber-­Reinforced Composite Materials Based on Sustainable Geopolymer Matrix,” Procedia Engineering, V. 21, 2011, pp. 1124-1131. doi: 10.1016/j.proeng.2011.11.2120

9. Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U. J.; and Jumaat, M. Z., “Graphene Nanoplatelet-Fly Ash Based Geopolymer Composites,” Cement and Concrete Research, V. 76, 2015, pp. 222-231. doi: 10.1016/j.cemconres.2015.06.003

10. Davidovits, J., “Geopolymers: Inorganic Polymeric New Materials,” Journal of Thermal Analysis and Calorimetry, V. 37, No. 8, 1991, pp. 1633-1656. doi: 10.1007/BF01912193

11. Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Metselaar, H. S. C.; and Jumaat, M. Z., “Mechanisms of Interfacial Bond in Steel and Polypropylene Fiber Reinforced Geopolymer Composites,” Composites Science and Technology, V. 122, 2016, pp. 73-81. doi: 10.1016/j.compscitech.2015.11.009

12. He, P.; Jia, D.; Lin, T.; Wang, M.; and Zhou, Y., “Effects of High-Temperature Heat Treatment on the Mechanical Properties of Unidirectional Carbon Fiber Reinforced Geopolymer Composites,” Ceramics International, V. 36, No. 4, 2010, pp. 1447-1453. doi: 10.1016/j.ceramint.2010.02.012

13. Yunsheng, Z.; Wei, S.; Zongjin, L.; Xiangming, Z.; and Chungkong, C., “Impact Properties of Geopolymer Based Extrudates Incorporated with Fly Ash and PVA Short Fiber,” Construction and Building Materials, V. 22, No. 3, 2008, pp. 370-383. doi: 10.1016/j.conbuildmat.2006.08.006

14. Bernal, S.; De Gutierrez, R.; Delvasto, S.; and Rodriguez, E., “Performance of an Alkali-Activated Slag Concrete Reinforced with Steel Fibers,” Construction and Building Materials, V. 24, No. 2, 2010, pp. 208-214. doi: 10.1016/j.conbuildmat.2007.10.027

15. Sanjayan, J. G.; Nazari, A.; and Pouraliakbar, H., “FEA Modelling of Fracture Toughness of Steel Fibre-Reinforced Geopolymer Composites,” Materials & Design, V. 76, 2015, pp. 215-222. doi: 10.1016/j.matdes.2015.03.029

16. Ganesan, N.; Indira, P.; and Santhakumar, A., “Engineering Properties of Steel Fibre Reinforced Geopolymer Concrete,” Advances in Concrete Construction, V. 1, No. 4, 2013, pp. 305-318. doi: 10.12989/acc2013.1.4.305

17. Hadi, M. N. S.; Farhan, N. A.; and Sheikh, M. N., “Design of Geopolymer Concrete with GGBFS at Ambient Curing Condition Using Taguchi Method,” Construction and Building Materials, V. 140, 2017, pp. 424-431. doi: 10.1016/j.conbuildmat.2017.02.131

18. Duxson, P.; Provis, J. L.; Lukey, G. C.; and Van Deventer, J. S., “The Role of Inorganic Polymer Technology in the Development of ‘Green Concrete’,” Cement and Concrete Research, V. 37, No. 12, 2007, pp. 1590-1597. doi: 10.1016/j.cemconres.2007.08.018

19. Visintin, P.; Ali, M. M.; Albitar, M.; and Lucas, W., “Shear Behaviour of Geopolymer Concrete Beams without Stirrups,” Construction and Building Materials, V. 148, 2017, pp. 10-21. doi: 10.1016/j.conbuildmat.2017.05.010

20. Madheswaran, C.; Ambily, P.; Lakshmanan, N.; Dattatreya, J.; and Sathik, S., “Shear Behavior of Reinforced Geopolymer Concrete Thin-Webbed T-Beams,” ACI Materials Journal, V. 111, No. 1, Jan.-Feb. 2014, pp. 89-98.

21. Chang, E. H., “Shear and Bond Behaviour of Reinforced Fly Ash-Based Geopolymer Concrete Beams,” Curtin University of Technology, Perth, Australia, 2009, 382 pp.

22. Sumajouw, D.; Hardjito, D.; Wallah, S.; and Rangan, B., “Behaviour and Strength of Reinforced Fly Ash-Based Geopolymer Concrete Beams,” Australian Structural Engineering Conference 2005, Engineers Australia, Sydney, Australia, 2005, pp. 453-459.

23. Albitar, M.; Ali, M. M.; and Visintin, P., “Experimental Study on Fly Ash and Lead Smelter Slag-Based Geopolymer Concrete Columns,” Construction and Building Materials, V. 141, 2017, pp. 104-112. doi: 10.1016/j.conbuildmat.2017.03.014

24. Sumajouw, D.; Hardjito, D.; Wallah, S.; and Rangan, B., “Fly Ash-Based Geopolymer Concrete: Study of Slender Reinforced Columns,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 3124-3130. doi: 10.1007/s10853-006-0523-8

25. Rahman, M., and Sarker, P., “Geopolymer Concrete Columns under Combined Axial Load and Biaxial Bending,” Proceedings of the CONCRETE 2011 Conference, The Concrete Institute of Australia, Perth, Australia, 2011, 8 pp.

26. Sarker, P. K., “Analysis of Geopolymer Concrete Columns,” Materials and Structures, V. 42, No. 6, 2009, pp. 715-724. doi: 10.1617/s11527-008-9415-5

27. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.

28. AS 1391-2007, “Metallic Materials – Tensile Testing at Ambient Temperature,” Standards Australia, Sydney, Australia, 2007, 54 pp.

29. AS 1012.9-1999, “Determination of the Compressive Strength of Concrete Specimens,” Standards Australia, Sydney, Australia, 1999, 10 pp.

30. AS 1012.17-2014, “Methods of Testing Concrete - Determination of the Static Chord Modulus of Elasticity and Poisson’s Ratio of Concrete Specimens, ” Standards Australia, Sydney, Australia, 2014, 15 pp.

31. AS 1012.11-2000, “Methods of Testing Concrete – Determination of the Modulus of Rupture,” Standards Australia, Sydney, Australia, 2000, 8 pp.

32. Hadi, M. N. S., “Behaviour of Eccentric Loading of FRP Confined Fibre Steel Reinforced Concrete Columns,” Construction and Building Materials, V. 23, No. 2, 2009, pp. 1102-1108. doi: 10.1016/j.conbuildmat.2008.05.024

33. Ezeldin, A. S., and Balaguru, P. N., “Normal- and High-Strength Fiber-Reinforced Concrete under Compression,” Journal of Materials in Civil Engineering, ASCE, V. 4, No. 4, 1992, pp. 415-429. doi: 10.1061/(ASCE)0899-1561(1992)4:4(415)

34. Hadi, M. N. S.; Balanji, E. K.; and Sheikh, M. N., “Behavior of Steel Fiber-Reinforced High-Strength Concrete Columns under Different Loads,” ACI Structural Journal, V. 114, No. 4, July-Aug. 2017, pp. 815-826. doi: 10.14359/51689781


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer