Title:
Effect of Reinforcing Bar Microstructure on Passive Film Exposed to Simulated Concrete Pore Solution
Author(s):
R. R. Hussain, J. K. Singh, A. Alhozaimy, A. Al-Negheimish, C. Bhattacharya, R. S. Pathania, and D. D. N. Singh
Publication:
Materials Journal
Volume:
115
Issue:
2
Appears on pages(s):
181-190
Keywords:
corrosion; electrochemical impedance spectroscopy; passive layer; Raman spectroscopy; reinforcing bars
DOI:
10.14359/51701237
Date:
3/1/2018
Abstract:
Use of thermomechanically treated (TMT) reinforcing bars has become popular in the concrete construction industry after their introduction in the 1980s. This can be attributed to the fact that thermomechanical treatment enhances the strength and ductility of reinforcing bars remarkably. However, limited research is available on the corrosion behavior of TMT reinforcing bars after they are embedded in concrete. To enhance knowledge and insights into this area, the authors investigated the protective properties of two types of steel reinforcement bars (reinforcing bars)—namely, tempered martensite (TM) and pearlite-ferrite (PF)—after exposing them to concrete pore solution. The microstructures of both types of reinforcing bars were investigated, and their kinetics of growth and mechanism of nucleation were recorded by employing electrochemical impedance spectroscopy and polarization. Studies reveal that protective film on the surface of steel with TM microstructure develops at a significantly higher rate and is more stable compared to that on steel with PF microstructure. This superior protective nature is attributed to the development of a compact and adherent oxide film on TM steel. A model is proposed to explain the results obtained during the study. Raman spectroscopy of passive films formed on the surface of reinforcing bars exposed to concrete pore solution supports the proposed model.
Related References:
1. Kumar, V., “Protection of Steel Reinforcement for Concrete—A Review,” Corrosion Review, V. 16, No. 4, 1998, pp. 317-358. doi: 10.1515/CORRREV.1998.16.4.317
2. Krishnamurthy, R. M., “Microstructure and Yield Strength Effects on Hydrogen Environment Fatigue of Steels,” PhD thesis, University of Virginia, Charlottesville, VA, 1991.
3. Koh, S. U.; Kim, J. S.; Yang, B. Y.; and Kim, K. Y., “Effect of Line Pipe Steel Microstructure on Susceptibility to Sulfide Stress Cracking,” Corrosion, V. 60, No. 3, 2004, pp. 244-253. doi: 10.5006/1.3287728
4. Saxena, V. K.; Bharti, A.; Malakondiah, G.; Moiuddin, N.; and Radhakrishnan, V. M., “Metallurgical Aspects and Closure Maps of Fatigue-Crack Growth of Alloy-Steels. 2. Effect of Surface-Treatment on Crack Closure,” Transactions of the Indian Institute of Metals, V. 49, No. 1-2, 1996, pp. 55-66.
5. Sankaran, S.; Subramanya Sarma, V.; Padmanabhan, K. A.; Jaeger, G.; and Koethe, A., “High Cycle Fatigue Behaviour of a Multiphase Microalloyed Medium Carbon Steel: A Comparison between Ferrite-Pearlite and Tempered Martensite Microstructures,” Materials Science and Engineering A, V. 362, No. 1-2, 2003, pp. 249-256. doi: 10.1016/S0921-5093(03)00583-5
6. Zhu, M.; Du, C.; Li, X.; Liu, Z.; Wang, S.; Zhao, T.; and Jia, J., “Effect of Strength and Microstructure on Stress Corrosion Cracking Behavior and Mechanism of X80 Pipeline Steel in High pH Carbonate/Bicarbonate Solution,” Journal of Materials Engineering and Performance, V. 23, No. 4, 2014, pp. 1358-1365. doi: 10.1007/s11665-014-0880-4
7. Domian, H. A.; Emanuelson, R. H.; Sarver, L. W.; Theus, G. J.; and Katz, L., “Effect of Microstructure on Stress Corrosion Cracking of Alloy 600 in High Purity Water,” Corrosion, V. 33, No. 1, 1977, pp. 26-38. doi: 10.5006/0010-9312-33.1.26
8. Sarkar, P. P.; Kumar, P.; and Chakraborti, P. C., “Microstructure-Based Evaluation of Stress Corrosion Cracking Behaviour of Dual-Phase Steels in 3.5% NaCl Solution,” Materials Sciences and Applications, V. 2, 2013, pp. 1-22.
9. Ueda, M., and Takabe, H., “Effect of Environmental Factor and Microstructure on Morphology of Corrosion Products in CO2 Environments,” Proceedings of NACE Corrosion/1999, Paper No. 13, NACE International, San Antonio, TX, 1999.
10. Palacios, C. A., and Shadley, J. R., “Characteristics of Corrosion Scales on Steels in a CO2-Saturated NaCl Brine,” Corrosion, V. 47, No. 2, 1991, pp. 122-127. doi: 10.5006/1.3585227
11. Lopez, A. D.; Simison, S. N.; and De Sanchez, S. R., “The Influence of Steel Microstructure on CO2 Corrosion EIS Studies on the Inhibition Efficiency of Benzimidazole,” Electrochimica Acta, V. 48, No. 7, 2003, pp. 845-854. doi: 10.1016/S0013-4686(02)00776-4
12. Dugstad, A.; Hemmer, H.; and Seiersten, M., “Effect of Steel Microstructure upon Corrosion Rate and Protective Iron Carbonate Film Formation,” Corrosion 2000, NACE International, Orlando, FL, Mar. 26-31, 2000.
13. El-Mahallawi, I. S.; El Koussy, M. R.; El Raghy, S. M.; Megahed, G.; Hashem, M.; Waheed, A. F.; and Abd-Ellatif, O., “Current Research in Egypt on Optimisation of Combined Mechanical Strength and Corrosion Behaviour of Steel Reinforcing Bar,” International Heat Treatment and Surface Engineering, V. 1, No. 3, 2007, pp. 126-137. doi: 10.1179/174951507X235722
14. Heyn, E., and Bauer, O., “Influence of the Treatment on the Solubility of Steel in Sulphuric Acid,” Journal of the Iron and Steel Institute, V. 79, 1909, pp. 109-241.
15. Paolinelli, L. D.; Pérez, T.; and Simison, S. N., “The Effect of Pre-Corrosion and Steel Microstructure on Inhibitor Performance in CO2 Corrosion,” Corrosion Science, V. 50, No. 9, 2008, pp. 2456-2464. doi: 10.1016/j.corsci.2008.06.031
16. Waard, D. C.; Lotz, U.; and Dugstad, A., “Influence of Liquid Flow Velocity on CO2 Corrosion. A Semi-Empirical Model,” Paper No. 128, Corrosion 1995, NACE International, Houston, TX, 1995.
17. Wu, Q.; Zhang, Z.; Dong, X.; and Yang, J., “Corrosion Behavior of Low-Alloy Steel Containing 1% Chromium in CO2 Environments,” Corrosion Science, V. 75, 2013, pp. 400-408. doi: 10.1016/j.corsci.2013.06.024
18. Cleary, H. J., and Greene, N. D., “Corrosion Properties of Iron and Steel,” Corrosion Science, V. 7, No. 12, 1967, pp. 821-831. doi: 10.1016/S0010-938X(67)80115-X
19. Sarkar, P. P.; Kumar, P.; Manna, M. K.; and Chakraborti, P. C., “Microstructural Influence on the Electrochemical Corrosion Behaviour of Dual-Phase Steels in 3.5% NaCl Solution,” Materials Letters, V. 59, No. 19-20, 2005, pp. 2488-2491. doi: 10.1016/j.matlet.2005.03.030
20. Ehteshamzadeh, M.; Jafari, A. H.; Naderi, E.; and Hosseini, M. G., “Effect of Carbon Steel Microstructures and Molecular Structure of Two New Schiff Base Compounds on Inhibition Performance in 1M HCl Solution by EIS,” Materials Chemistry and Physics, V. 113, No. 2-3, 2009, pp. 986-993. doi: 10.1016/j.matchemphys.2008.08.026
21. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE International, Houston, TX, 1974, 644 pp.
22. Trejo, D.; Monteiro, P.; Thomas, G.; and Wang, X., “Mechanical Properties and Corrosion Susceptibility of Dual-Phase Steel in Concrete,” Cement and Concrete Research, V. 24, No. 7, 1994, pp. 1245-1254. doi: 10.1016/0008-8846(94)90109-0
23. Zhang, C.; Cai, D.; Liao, B.; Zhao, T.; and Fan, Y., “A Study on the Dual-Phase Treatment on Weathering Steel 09CuPCrNi,” Materials Letters, V. 58, No. 9, 2004, pp. 1524-1529. doi: 10.1016/j.matlet.2003.10.018
24. Thomas, G., “Physical Metallurgy of Direct-Quenched Steels,” Proceedings of a Symposium Sponsored by the Ferrous Metallurgy Committee of TMS and the Phase Transformations Committee of ASM International, K. A. Taylor, S. W. Thompson, and F. B. Fletcher, eds., Chicago, IL, 1993, 265 pp.
25. Jha, B. K.; Avtar; R.; and Dwivedi, V., R., “Structure-Property Correlation in Low Carbon Low Alloy High Strength Wire Rods/Wires Containing Retained Austenite,” Transactions of the Indian Institute of Metals, V. 49, 1996, pp. 133-142.
26. Kurklu, G.; Başpinar, M. S.; and Ergun, A., “A Comparative Study on Bond of Different Grade Reinforcing Steels in Concrete under Accelerated Corrosion,” Steel and Composite Structures, V. 14, No. 3, 2013, pp. 229-242. doi: 10.12989/scs.2013.14.3.229
27. Andrade, C.; Merino, P.; Nóvoa, X. R.; Pérez, M. C.; and Soler, L., “Passivation of Reinforcing Steel in Concrete,” Materials Science Forum, V. 192-194, 1995, pp. 891-898. doi: 10.4028/www.scientific.net/MSF.192-194.891
28. Hansson, C. M., “Comments on Electrochemical Measurements of the Rate of Corrosion of Steel in Concrete,” Cement and Concrete Research, V. 14, No. 4, 1984, pp. 574-584. doi: 10.1016/0008-8846(84)90135-2
29. Taylor, H. F. W., Cement Chemistry, Thomas Telford, London, UK, 1997, 480 pp.
30. Hausmann, D. A., “Steel Corrosion in Concrete, How Does It Occur?” Materials Protection, V. 6, 1967, pp. 19-23.
31. Ann, K. Y., and Song, H.-W., “Chloride Threshold Level for Corrosion of Steel in Concrete,” Corrosion Science, V. 49, No. 11, 2007, pp. 4113-4133. doi: 10.1016/j.corsci.2007.05.007
32. Christensen, B. J.; Mason, T. O.; and Jennings, H. M., “Influence of Silica Fume on the Early Hydration of Portland Cements Using Impedance Spectroscopy,” Journal of the American Ceramic Society, V. 75, No. 4, 1992, pp. 939-945. doi: 10.1111/j.1151-2916.1992.tb04163.x
33. BIS 1786:2008, “Specifications for High Strength Deformed Steel Bars and Wires for Concrete Reinforcement,” Bureau of Indian Standards, New Delhi, India, 2008, 333 pp.
34. ASTM A615/A615M-16, “Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA, 2016, 8 pp.
35. Hussain, R. R.; Alhozaimy, A.; Al Negheimish, A.; Al-Zaid, R.; and Singh, D. D. N., “Mechanism of Nucleation and Growth of Passive Film on Steel Reinforcing Bar at Different Durations of its Exposure in Concrete Pore Solution at Nanoscale,” ACI Materials Journal, V. 112, No. 4, July-Aug. 2015, pp. 523-534. doi: 10.14359/51687662
36. ASTM C876-09, “Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete,” ASTM International, West Conshohocken, PA, 2009, 7 pp.
37. Kundu, S.; Dutta, M.; Ganguly, S.; and Chandra, S., “Prediction of Phase Transformation and Microstructure in Steel Using Cellular Automaton Technique,” Scripta Materialia, V. 50, No. 6, 2004, pp. 891-895. doi: 10.1016/j.scriptamat.2003.12.007
38. Jacot, A., and Rappaz, M., “A Combined Model for the Description of Austenitization Homogenization and Grain Growth in Hypoeutectoid Fe-C Steels Using Heating,” Acta Materialia, V. 47, No. 5, 1999, pp. 1645-1651. doi: 10.1016/S1359-6454(99)00005-1
39. Kumar, M.; Sasikumar, R.; and Nair, P. K., “Competition between Nucleation and Early Growth of Ferrite from Austenite-Studies Using Cellular Automation Simulations,” Acta Materialia, V. 46, No. 17, 1998, pp. 6291-6303. doi: 10.1016/S1359-6454(98)00243-2
40. Zhang, L.; Zhang, C. B.; Wang, Y. M.; Wang, S. Q.; and Ye, H. Q., “A Cellular Automation Investigation of the Transformation from Austenite to Ferrite during Continuous Cooling,” Acta Materialia, V. 51, No. 18, 2003, pp. 5519-5527. doi: 10.1016/S1359-6454(03)00416-6
41. Tong, M.; Li, D.; and Li, Y., “Modeling the Austenite-Ferrite Diffusive Transformation during Continuous Cooling on a Mesoscale Using Monte Carlo Method,” Acta Materialia, V. 52, No. 5, 2004, pp. 1155-1162. doi: 10.1016/j.actamat.2003.11.006
42. Bhadeshia, H. K. D. H., “The Application of a First Order Quasichemical Theory to Transformations in Steels,” Metal Science, V. 16, No. 3, 1982, pp. 167-170. doi: 10.1179/030634582790427244
43. Aaronson, H. I.; Domian, H. A.; and Pound, G. M., “Thermodynamics of Austenite Poreu-tectoid Ferrite Transformation I, Fe-C Alloys,” Transactions of TMS-AIME, V. 236, 1966, pp. 753-767.
44. Park, E.; Ostrovski, O.; Zhang, J.; Thomson, S.; and Howe, R., “Characterization of Phases Formed in the Iron Carbide Process by X-Ray Diffraction, Mossbauer, X-Ray Photoelectron Spectroscopy, and Raman Spectroscopy Analyses,” Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, V. 32, No. 5, 2001, pp. 839-845. doi: 10.1007/s11663-001-0071-1
45. Revie, R. W., and Uhlig, H. H., Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering, fourth edition, John Wiley & Sons, Inc., Hoboken, NJ, 2008, 143 pp.
46. Farelas, F.; Galicia, M.; Brown, B.; Nesic, S.; and Castaneda, H., “Evolution of Dissolution Processes at the Interface of Carbon Steel Corroding in a CO2 Environment Studied by EIS,” Corrosion Science, V. 52, No. 2, 2010, pp. 509-517. doi: 10.1016/j.corsci.2009.10.007
47. Staicopolus, D. N., “The Role of Cementite in the Acidic Corrosion of Steel,” Journal of the Electrochemical Society, V. 110, No. 11, 1963, pp. 1121-1124. doi: 10.1149/1.2425602
48. Keleştemur, O.; Aksoy, M.; and Yildz, S., “Corrosion Behavior of Tempered Dual Phase Steel Embedded in Concrete,” International Journal of Minerals Metallurgy and Materials, V. 16, No. 1, 2009, pp. 43-50. doi: 10.1016/S1674-4799(09)60008-X
49. Yumoto, H.; Nagamine, Y.; Nagahama, J.; and Shimotomai, M., “Corrosion and Stability of Cementite Films Prepared by Electron Shower,” Vacuum, V. 65, No. 3-4, 2002, pp. 527-531. doi: 10.1016/S0042-207X(01)00467-5
50. Singh, D. D. N.; Yadav, S. J.; Pandya, A.; and Panwar, K. S., “Unfolding the Mystery of the Non-Rusting Behavior of Damascus Steel,” Proceedings of the International Council of Museums-CC, Allied Publishers, New Delhi, India, 2008, pp. 447-456.