Title:
Stepwise Bond Model Including Unconfined and Partially Confined Hooks
Author(s):
Armin Erfanian and Alaa E. Elwi
Publication:
Structural Journal
Volume:
115
Issue:
1
Appears on pages(s):
103-112
Keywords:
bond; confinement; in-place pressure; partial confinement; slip; splitting; stepwise
DOI:
10.14359/51700949
Date:
1/1/2018
Abstract:
A contact interface model including hook reinforcement under monotonic, unconfined, in-plane compression and tension is presented, which is in close agreement with experimental test results. Unconfined in-plane compression accompanies unconfined hooks under the bent portion of a hook and creates splitting in the same plane as the hook. Although the effect of pressure on bond capacity of unconfined concrete is investigated in the literature, there is little information on reliable bond-slip behavior for this case. fib 2010 does not provide bond-slip equations for unconfined and partially confined concrete under compression, although it considers the case of confined concrete under pressure. Laborious effort was made in this research to formulate a procedure that works in the three-dimensional finite element environment without impractical limitations. In addition, a new method of computing bond stress increments is proposed to be used in cases involving slip-dependent normal pressure such as joints.
Related References:
1. Link, R. A.; Elwi, A. E.; and Scanlon, A., “Biaxial Tension Stiffening Due to Generally Oriented Reinforcing Layers,” Journal of Engineering Mechanics, ASCE, V. 115, No. 8, 1989, pp. 1647-1662. doi: 10.1061/(ASCE)0733-9399(1989)115:8(1647)
2. He, X. G., and Kwan, A. K. H., “Modeling Dowel Action of Reinforcement Bars for Finite Element Analysis of Concrete Structures,” Computers & Structures, V. 79, No. 6, 2001, pp. 595-604. doi: 10.1016/S0045-7949(00)00158-9
3. Ngo, D., and Scordelis, A. C., “Finite Element Analysis of Reinforced Concrete Beams,” ACI Journal Proceedings, V. 64, No. 3, Mar. 1967, pp. 152-163.
4. Nilson, A. H., “Nonlinear Analysis of Reinforced Concrete by the Finite Element Method,” ACI Journal Proceedings, V. 65, No. 9, Sept. 1968, pp. 757-766.
5. Hofstetter, G., and Mang, H. A., Computational Mechanics of Reinforced Concrete Structures, Vieweg & Sohn Verlagsgesellschaft mbH, Wiesbaden, Germany, 1995, 366 pp.
6. Keuser, M., and Mehlhorn, G., “Finite Element Models for Bond Problems,” Journal of Structural Engineering, ASCE, V. 113, No. 10, 1987, pp. 2160-2173. doi: 10.1061/(ASCE)0733-9445(1987)113:10(2160)
7. Mehlohrn, G., “Some Developments for Finite Element Analysis of Reinforced Concrete Structures,” Proceedings of the Second International Conference on Computer Aided Analysis and Design of Concrete Structures, Pineridge Press, Swansea, UK, 1990, pp. 1319-1336.
8. Miguel, P. F.; Jawad, M. A.; and Fernandez, M. A., “A Discrete-Crack Model for the Analysis of Concrete Structures,” Proceedings of the Second International Conference on Computer Aided Analysis and Design of Concrete Structures, Pineridge Press, Swansea, UK, 1990, pp. 847-908.
9. Lowes, L. N.; Moehle, J. P.; and Govindjee, S., “Concrete-Steel Bond Model for Use in Finite Element Modeling of Reinforced Concrete Structures,” ACI Structural Journal, V. 101, No. 4, July-Aug. 2004, pp. 501-511.
10. “fib Model Code for Concrete Structures 2010,” Ernst & Sohn, Berlin, Germany, 2013. 500 pp.
11. Cairns, J., “Bond and Anchorage of Embedded Steel Reinforcement in the fib Model Code 2010,” Structural Concrete, V. 16, No. 1, 2015, pp. 45-55. doi: 10.1002/suco.201400043
12. Zhang, X.; Wang, L.; Zhang, J.; and Liu, Y., “Model for Flexural Strength Calculation of Corroded RC Beams Considering Bond-Slip Behavior,” Journal of Engineering Mechanics, ASCE, V. 142, No. 7, 2016, pp. 1-11. doi: 10.1061/(ASCE)EM.1943-7889.0001079
13. Xu, L.; Hai, T.; and King, L. C., “Bond Stress-Slip Prediction under Pullout and Dowel Action in Reinforced Concrete Joints,” ACI Structural Journal, V. 111, No. 4, July-Aug. 2014, pp. 977-988. doi: 10.14359/51686816
14. Costa, R.; Providência, P.; and Dias, A., “Anchorage Models for Reinforced Concrete Beam-Column Joints under Quasi-Static Loading,” ACI Structural Journal, V. 113, No. 3, May-June 2016, pp. 503-514. doi: 10.14359/51688759
15. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.
16. Zanuy, C.; Curbach, E. H. M.; and Lindorf, A., “Finite Element Study of Bond Strength between Concrete and Reinforcement under Uneven Confinement Condition,” Structural Concrete, V. 14, No. 3, 2013, pp. 260-270. doi: 10.1002/suco.201200019
17. Cervenka, V., “Reliability-Based Non-Linear Analysis According to fib Model Code 2010,” Structural Concrete, V. 14, No. 1, 2013, pp. 19-28. doi: 10.1002/suco.201200022
18. Eligehausen, R.; Popov, E. P.; and Bertero, V. V., “Local Bond Stress-Slip Relationships of Deformed Bars under Generalized Excitations,” Report No. UCB/EERC-83/23, Earthquake Engineering Research Center, University of California, Berkeley, Berkeley, CA, 1983, 169 pp.
19. Shima, H.; Chou, L. L.; and Okamura, H., “Micro and Macro Models for Bond in Reinforced Concrete,” Journal of the Faculty of Engineering, University of Tokyo, Tokyo, Japan, V. 39, No. 2, 1987, pp. 133-194.
20. Lormanometee, S., “Bond Strength of Deformed Reinforcing Bar under Lateral Pressure,” University of Texas at Austin, Austin, TX, Jan. 1974, 64 pp.
21. Malvar, L. J., “Bond of Reinforcement under Controlled Confinement,” ACI Materials Journal, V. 89, No. 6, Nov.-Dec. 1992, pp. 593-601.
22. Untrauer, R., “E., and Henry, R. L., “Influence of Normal Pressure on Bond Strength,” ACI Journal Proceedings, V. 62, No. 5, May 1965, pp. 577-586.
23. Robins, P. J., and Standish, I. G., “The Influence of Lateral Pressure upon Anchorage Bond,” Magazine of Concrete Research, V. 36, No. 129, 1984, pp. 195-202. doi: 10.1680/macr.1984.36.129.195
24. Rucka, M., and Wilde, K., “Experimental Study on Ultrasonic Monitoring of Splitting Failure in Reinforced Concrete,” Journal of Nondestructive Evaluation, V. 32, No. 4, 2013, pp. 372-383. doi: 10.1007/s10921-013-0191-y
25. Solomos, G., and Berra, M., “Rebar Pullout Testing under Dynamic Hopkinson Bar Induced Impulsive Loading,” Materials and Structures, V. 43, No. 1-2, 2010, pp. 247-260. doi: 10.1617/s11527-009-9485-z
26. Ghandehari, M.; Krishnaswamy, S.; and Shah, S., “Bond-Induced Longitudinal Fracture in Reinforced Concrete,” Journal of Applied Mechanics, V. 67, No. 4, 2000, pp. 740-748. doi: 10.1115/1.1313822
27. Murcia-Delso, J., and Shing, P., “Bond-Slip Model for Detailed Finite-Element Analysis of Reinforced Concrete Structures,” Journal of Structural Engineering, ASCE, V. 141, No. 4, 2015, p. 04014125. doi: 10.1061/(ASCE)ST.1943-541X.0001070
28. Desnerck, P.; Lees, J. M.; and Morley, C. T., “Bond Behaviour of Reinforcing Bars in Cracked Concrete,” Construction and Building Materials, V. 94, 2015, pp. 126-136. doi: 10.1016/j.conbuildmat.2015.06.043
29. Lahnert, B. J.; Houde, J.; and Gerstle, K. H., “Measurement of Slip Between Steel and Concrete Core,” ACI Journal Proceedings, V. 83, No. 6, May-June 1986, pp. 974-982.
30. Maeda, M.; Otani, S.; and Aoyama, H., “Effect of Confinement on Bond Splitting Behavior in Reinforced Concrete Beams,” Structural Engineering International, V. 5, No. 3, 1995, pp. 166-171. doi: 10.2749/101686695780601042
31. Lura, P.; Plizzari, G.; and Riva, P., “Splitting Crack Propagation in Pull-out Tests,” Proceedings of FramCos IV, Fracture Mechanics of Concrete Structures, R. de Borst, J. Mazars, and J. Pijaudier-Cabot, eds., Balkema, Paris, France, 2001, pp. 999-1006.
32. Gambarova, P.; Rosati, G. P.; and Zasso, B., “Steel-to-Concrete Bond after Concrete Splitting: Test Results,” Materials and Structures, V. 22, No. 1, 1989, pp. 35-47. doi: 10.1007/BF02472693
33. Gambarova, P.; Rosati, G. P.; and Zasso, B., “Steel-to-Concrete Bond after Concrete Splitting: Constitutive Laws and Interface Deterioration,” Materials and Structures, V. 22, No. 5, 1989, pp. 347-356. doi: 10.1007/BF02472505
34. Feldman, L. R., and Bartlett, M., “Bond Strength Variability in Pullout Specimens with Plain Reinforcement,” ACI Structural Journal, V. 102, No. 6, Nov.-Dec. 2005, pp. 860-867.
35. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.
36. Tepfers, R., “Cracking of Concrete Cover along Anchored Deformed Reinforcing Bars,” Magazine of Concrete Research, V. 31, No. 106, 1979, pp. 3-12. doi: 10.1680/macr.1979.31.106.3
37. Minor, J., and Jirsa, J., “Behavior of Bent Bar Anchorages,” ACI Structural Journal, V. 72, No. 4, Apr. 1975, pp. 141-149.
38. Luccioni, B. M.; López, D. E.; and Danesi, R. F., “Bond-Slip in Reinforced Concrete Elements,” Journal of Structural Engineering, ASCE, V. 131, No. 11, 2005, pp. 1690-1698. doi: 10.1061/(ASCE)0733-9445(2005)131:11(1690)
39. Désir, J.-M.; Romdhane, M. R. B.; Ulm, F.-J.; and Fairbairn, E. M. R., “Steel-Concrete Interface: Revisiting Constitutive and Numerical Modeling,” Computers & Structures, V. 71, No. 5, 1999, pp. 489-503. doi: 10.1016/S0045-7949(98)00308-3
40. Lettow, S., “Ein Verbundelement für nichtlineare Finite Elemente Analysen - Anwendung auf Übergreifungsstöße. Dissertation,” Institut für Werkstoffe im Bauwesen, Universität Stuttgart, Stuttgart, Germany, 2006, 196 pp.
41. Mendes, L. A. M., and Castro, M. S. S., “A New RC Bond Model Suitable for Three-Dimensional Cyclic Analyses,” Computers & Structures, V. 120, 2013, pp. 47-64. doi: 10.1016/j.compstruc.2013.01.007
42. ABAQUS, “Abaqus/CAE User’s Manual.” Dassault Systémes, 2012.
43. Oller, S.; Onate, E.; Oliver, J.; and Lubliner, J., “Finite Element Nonlinear Analysis of Concrete Structures Using a Plastic-Damage Model,” Engineering Fracture Mechanics, V. 35, No. 1-3, 1990, pp. 219-231. doi: 10.1016/0013-7944(90)90200-Z
44. Lubliner, J.; Oliver, J.; Oller, S.; and Onate, E., “A Plastic-Damage Model for Concrete,” International Journal of Solids and Structures, V. 25, No. 3, 1989, pp. 299-326. doi: 10.1016/0020-7683(89)90050-4
45. Hofstetter, G., and Meschke, G., Numerical Modeling of Concrete Cracking, Springer Science & Business Media, Berlin, Germany, 2011, 327 pp.