Durability of Cementitious Composites Mixed with Various Portland Limestone Cement-Cements

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Durability of Cementitious Composites Mixed with Various Portland Limestone Cement-Cements

Author(s): Aidi Marzouki and André Lecomte

Publication: Materials Journal

Volume: 114

Issue: 5

Appears on pages(s): 763-773

Keywords: durability; freezing and thawing; grinding quality; portland limestone cement-cement (PLC-cement); pure water; sulfate

DOI: 10.14359/51700798

Date: 9/1/2017

Abstract:
This paper presents a durability study of cementitious composites mixed with seven Tunisian blended cements (portland limestone cement-cement [PLC-cement]) manufactured on an industrial scale with a varying limestone filler content (up to 35%). The durability tests were performed on mortars and concretes according to existing standards. The results show that limestone filler has different effects on the durability of composites, depending on the limestone amounts and the grinding quality of binders. Thus, they improve concrete resistance to the leaching of calcium ions into mono-distilled water, particularly when they are finer (more 99% of limestone < 40 μm). Furthermore, limestone does not alter the resistance to the sulfate ion attack when its content does not exceed 25%. However, freezing and thawing causes rapid deterioration (decrease) in mechanical properties if the limestone content is higher than 25%. These results can serve as a recommendation for using PLC-cements in countries where they are rarely used.

Related References:

1. Ingram, K. D., and Daugherty, K. E., “A Review of Limestone Additions to Portland Cement and Concrete,” Cement and Concrete Composites, V. 13, No. 3, 1991, pp. 165-170. doi: 10.1016/0958-9465(91)90016-B

2. Benachour, Y.; Davy, C. A.; Skoczylas, F.; and Houari, H., “Effect of a High Calcite Filler Addition upon Microstructural, Mechanical, Shrinkage and Transport Properties of a Mortar,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 727-736. doi: 10.1016/j.cemconres.2008.02.007

3. Ramezanianpour, A. A.; Ghiasvand, E.; Nickseresht, I.; Mahdikhani, M.; and Moodi, F., “Influence of Various Amounts of Limestone Powder on Performance of Portland Limestone Cement Concretes,” Cement and Concrete Composites, V. 31, No. 10, 2009, pp. 715-720. doi: 10.1016/j.cemconcomp.2009.08.003

4. Menéndez, G.; Bonavetti, V.; and Irassar, E. F., “Strength Development of Ternary Blended Cement with Limestone Filler and Blast-Furnace Slag,” Cement and Concrete Composites, V. 25, No. 1, 2003, pp. 61-67. doi: 10.1016/S0958-9465(01)00056-7

5. Nehdi, M.; Mindess, S.; and Aïtcin, P.-C., “Optimization of High Strength Limestone Filler Cement Mortars,” Cement and Concrete Research, V. 26, No. 6, 1996, pp. 883-893. doi: 10.1016/0008-8846(96)00071-3

6. Hawkins, P.; Tennis, P.; and Detwiler, R., “The Use of Limestone in Portland Cement: A State-of-the-Art Review,” Engineering Bulletin 227, Portland Cement Association, Skokie, IL, 2003, 41 pp.

7. Tsivilis, S.; Batis, G.; Chaniotakis, E.; Grigoriadis, G.; and Theodossis, D., “Properties and Behavior of Limestone Cement Concrete and Mortar,” Cement and Concrete Research, V. 30, No. 10, 2000, pp. 1679-1683. doi: 10.1016/S0008-8846(00)00372-0

8. Vuk, T.; Tinta, V.; Gabrovšek, R.; and Kaučič, V., “The Effects of Limestone Addition, Clinker Type and Fineness on Properties of Portland Cement,” Cement and Concrete Research, V. 31, No. 1, 2001, pp. 135-139. doi: 10.1016/S0008-8846(00)00427-0

9. Bobrowski, G.-S.; Wilson, J.-L.; and Daugherty, K.-E., “Limestone Substitutes for Gypsum as a Cement Ingredient,” Rock Products, V. 8, No. 2, 1977, pp. 64-67.

10. Ghrici, M.; Kenai, S.; and Said-Mansour, M., “Mechanical Properties and Durability of Mortar and Concrete Containing Natural Pozzolana and Limestone Blended Cements,” Cement and Concrete Composites, V. 29, No. 7, 2007, pp. 542-549. doi: 10.1016/j.cemconcomp.2007.04.009

11. Gonzalez, M. A., and Irassar, E. F., “Effect of Limestone Filler on the Sulfate Resistance of Low C3A Portland Cement,” Cement and Concrete Research, V. 28, No. 11, 1998, pp. 1655-1667. doi: 10.1016/S0008-8846(98)00144-6

12. Tunisian Ministry of Equipment, public and private projects specifications, personal communication, 2010-2011.

13. Tunisian Standard, “NT 47.01 – Part 1: Cement. Composition, Specifications and Conformity Criteria for Common Cements,” Institut National et de la Propriété Industrielle, Tunis, Tunisia, 2007, 22 pp.

14. Survey with Tunisian cement manufacturers, personal communication, 2010.

15. “Internal Reports of the Ministry of Industry and Technology,” Tunisia, 2011, 17 pp.

16. Marzouki, A.; Lecomte, A.; Beddey, A.; Diliberto, C.; and Ouezdou, M. B., “The Effects of Grinding on the Properties of Portland-Limestone Cement,” Construction and Building Materials, V. 48, 2013, pp. 1145-1155. doi: 10.1016/j.conbuildmat.2013.07.053

17. EN 196-1, “Methods of Testing Cement—Part 1: Determination of Strength,” British Standards Institution, London, UK, 1995, 29 pp.

18. NF P 18-452, “Concretes—Measuring the Flow Time of Concretes and Mortars Using a Workability Meter,” Association Francaise de Normalisation, Saint-Denis, France, 1988, 11 pp.

19. N FP 18-837, “Produits de Calage et/ou Scellement à Base de Liants Hydrauliques, Essai de Tenue à l’Eau de Mer et/ou à l’Eau à Haute Teneur en Sulfates,” Association Francaise de Normalisation, Saint-Denis, France, 1993, 9 pp. (in French)

20. EN 206-1, “Concrete—Part 1: Specification, Performance, Production and Conformity,” British Standards Institution, London, UK, 2005, 59 pp.

21. Clastres, P., and Escadeillas, G., “Pathologie et Diagnostic des Ouvrages en Béton et en Béton Armé, Colloque International sols et Matériaux à Problèmes,” Tunisie, 2007, 51 pp. (in French)

22. Orchidis Laboratoire, “Analyses volumétriques 307,” www.orchidis.com/files/modes-operatoires/108-fr.pdf. (in French)

23. N FP 18-011, “Concretes—Classification of Aggressive Environments,” Association Francaise de Normalisation, Saint-Denis, France, 1992, 19 pp.

24. N FP 18-400, “Concretes—Molds for Cylindrical and Prismatic Specimens,” Association Francaise de Normalisation, Saint-Denis, France, 1981, 4 pp.

25. N FP 18-425, “Bétons—Essai de Gel sur Béton Durci—Gel dans l’Air—Dégel dans l’Eau,” Association Francaise de Normalisation, Saint-Denis, France, 2008, 9 pp. (in French)

26. BS EN 12390-5, “Testing Hardened Concrete. Flexural Strength of Test Specimens,” British Standards Institution, London, UK, 2009, 15 pp.

27. BS EN 12390-3, “Testing Hardened Concrete. Compressive Strength of Test Specimens,” British Standards Institution, London, UK, 2009, 8 pp.

28. Marzouki, A., “Ciments Portland au Calcaire en Tunisie: Effets de la Composition et de la Finesse de Broyage” PhD thesis, Ecole Nationale d’Ingénieurs de Tunis, Tunis, Tunisia, 2015, 247 pp.

29. Bonavetti, V. L.; Rahhal, V. F.; and Irassar, E. F., “Studies on the Carboaluminate Formation in Limestone Filler-Blended Cement,” Cement and Concrete Research, V. 31, No. 6, 2001, pp. 853-859. doi: 10.1016/S0008-8846(01)00491-4

30. Clodic, L., and Meike, A., “Thermodynamics of Calcium Silicate Hydrates: Development of a Database to Model Concrete Dissolution at 25°C Using the EQ3/6 Geochemical Modeling Code,” PhD thesis, Lawrence Livermore National Laboratory, Livermore, CA, 1997, 67 pp.

31. Perlot, C., “Influence de la Décalcification de Matériaux Cimentaires sur les Propriétés de Transfert: Application au Stockage Profond de Déchets Radioactifs,” PhD thesis, Université Paul Sabatier Toulouse et Faculté de Génie, Université de Sherbrooke, Sherbrooke, QC, Canada, 2005, 256 pp. (in French)

32. De Larrard, T.; Benboudjema, F.; Colliat, J.-B.; and Totenti, J.-M., “Modélisation de la Lixiviation sous Température Variable et Application à l’Estimation de la Durée de Vie d’un Ouvrage en Tenant Compte de la Variabilité des Matériaux,” ANR Applet, GT1, 2010, pp. 322-335. (in French)

33. Adenot, F., “Durabilité du Béton: Caractérisation et Modélisation des Processus Physiques et Chimiques de Dégradation du Ciment,” PhD thesis, Université d’Orléans, Orléans, France, 1992, 239 pp. (in French)

34. Andra, “Les matériaux cimentaires,” Référentiel Matériaux, tome 3, Rapport Andra, 2005, 319 pp.

35. Neville, A., Properties of Concrete, Addison Wesley Longman, Boston, MA, 1996, 825 pp.

36. ASTM C1012/C1012M-15, “Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution,” ASTM International, West Conshohocken, PA, 2015, 8 pp.

37. El Hachem, R.; Rozière, E.; Grondin, F.; and Loukili, A., “Etude Multicritères de l’Attaque Sulfatique Externe du Béton,” Séminaire International, Innovation et Valorisation en Génie Civil et Matériaux de Construction, Rabat, 2011, 6 pp. (in French)

38. Bessa-Badreddine, A., “Etude de la Contribution des Additions Minérales aux Propriétés Physiques, Mécaniques et de Durabilité des Mortiers,” PhD thesis, Université de Cergy Pontoise, Cergy Pontoise, France, 2004, 227 pp. (in French)

39. Mohammed, R.-K., “Effet de l’Attaque Sulfatique Externe sur la Durabilité des Bétons Autoplaçants,” PhD thesis, Université de Constantine, Constantine, Algeria, 2009, 169 pp. (in French)

40. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2011, 473 pp.

41. Hartshorn, S.-A.; Sharp, J.-H.; and Swamy, R.-N., “Thaumasite Formation in Portland-Limestone Cement Pastes,” Cement and Concrete Research, V. 29, No. 8, 1999, pp. 1331-1340. doi: 10.1016/S0008-8846(99)00100-3

42. Irassar, E.-F., “Sulfate Attack on Cementitious Materials Containing Limestone Filler - A Review,” Cement and Concrete Research, V. 39, No. 3, 2009, pp. 241-254. doi: 10.1016/j.cemconres.2008.11.007

43. Le Roux, A., and Orsetti, S., “Les Réactions Sulfatiques: Conditions de Formation, Structure et Expansion des Minéraux Secondaires Sulfatés,” Bull. Labo. P&C, 225, France, Mars-Avril, 2000, pp. 41-50. (in French)

44. Irassar, E.-F.; Bonavetti, V.-L.; Trezza, M.-A.; and Gonzalez, M.-A., “Thaumasite Formation in Limestone Filler Cements Exposed to Sodium Sulphate Solution at 20°C,” Cement and Concrete Composites, V. 27, No. 1, 2005, pp. 77-84. doi: 10.1016/j.cemconcomp.2003.10.003

45. Lothenbach, B.; Le Saout, G.; Gallucci, E.; and Scrivener, K., “Influence of Limestone on the Hydration of Portland Cements,” Cement and Concrete Research, V. 38, No. 6, 2008, pp. 848-860. doi: 10.1016/j.cemconres.2008.01.002

46. Voglis, N.; Kakali, G.; Chaniotakis, E.; and Tsivilis, S., “Portland-Limestone Cements. Their Properties and Hydration Compared to Those of Other Composite Cements,” Cement and Concrete Composites, V. 27, No. 2, 2005, pp. 191-196. doi: 10.1016/j.cemconcomp.2004.02.006

47. Schmidt, T.; Lothenbach, B.; Romer, M.; Neuenschwander, J.; and Scrivener, K., “Physical and Microstructural Aspects of Sulfate Attack on Ordinary and Limestone Blended Portland Cements,” Cement and Concrete Research, V. 39, No. 12, 2009, pp. 1111-1121. doi: 10.1016/j.cemconres.2009.08.005


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer