Flow Property of Alkali-Activated Slag with Modified Precursor

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Flow Property of Alkali-Activated Slag with Modified Precursor

Author(s): G. M. Kim, Hammad R. Khalid, S. M. Park, and H. K. Lee

Publication: Materials Journal

Volume: 114

Issue: 6

Appears on pages(s): 867-876

Keywords: alkali-activated slag; blast-furnace slag; compressive strength; flow property; modification

DOI: 10.14359/51700794

Date: 11/1/2017

Abstract:
This study investigates the influence of the precursor modification on the retardation of flow loss in alkali-activated slag (AAS). The blast-furnace slag precursor was modified by using a modifying solution incorporating NaOH or waterglass (Na2SiO3) to suppress the dissolution rates of the main reaction components such as Ca, Si, Mg, and Al. The influence of the Na2O/slag and silicate modulus of the modifying solution on the characteristics of the modified precursors was investigated in parallel with the leaching mechanism of Ca, Si, Mg, and Al from the modified precursor. The leached concentrations of Ca, Si, Mg, and Al from the modified precursor were less than those from the unmodified precursor. AAS paste was then produced from the modified precursor, and the flow property and compressive strength was investigated. AAS paste produced from the modified precursor maintained the flowability for 2 hours and had a compressive strength of 20 to 50 MPa (2900.8 to 7251.9 psi) at 28 days, while the flow of that produced from unmodified precursor was rapidly decreased within 1 hour and the compressive strength was approximately 65 MPa (9427.4 psi).

Related References:

1. Gartner, E., “Industrially Interesting Approaches to Low-CO2 Cements,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1489-1498. doi: 10.1016/j.cemconres.2004.01.021

2. Pacheco-Torgal, F.; Abdollahnejad, Z.; Camões, A. F.; Jamshidi, M.; and Ding, Y., “Durability of Alkali-Activated Binders: A Clear Advantage over Portland Cement or an Unproven Issue?” Construction and Building Materials, V. 30, 2012, pp. 400-405. doi: 10.1016/j.conbuildmat.2011.12.017

3. Li, C.; Sun, H.; and Li, L., “A Review: The Comparison between Alkali-Activated slag (Si + Ca) and Metakaolin (Si + Al) Cements,” Cement and Concrete Research, V. 40, No. 9, 2010, pp. 1341-1349. doi: 10.1016/j.cemconres.2010.03.020

4. Wang, S. D., and Scrivener, K. L., “Hydration Products of Alkali Activated Slag Cement,” Cement and Concrete Research, V. 25, No. 3, 1995, pp. 561-571. doi: 10.1016/0008-8846(95)00045-E

5. Hashim, A. N.; Hussin, K.; Begum, N.; Al Bakri Abdullah, M. M.; Abdul Razak, K.; and Ekaputri, J. J., “Effect of Sodium Hydroxide (NaOH) Concentration on Compressive Strength of Alkali-Activated Slag (AAS) Mortars,” Applied Mechanics and Materials, V. 754, 2015, pp. 300-304. doi: 10.4028/www.scientific.net/AMM.754-755.300

6. Puertas, F., and Torres-Carrasco, M., “Use of Glass Waste as an Activator in the Preparation of Alkali-Activated Slag. Mechanical Strength and Paste Characterization,” Cement and Concrete Research, V. 57, 2014, pp. 95-104. doi: 10.1016/j.cemconres.2013.12.005

7. Byfors, K.; Klingstedt, G.; Lehtonen, V.; Pyy, H.; and Romben, L., “Durability of Concrete Made with Alkali-Activated Slag,” Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Proceedings of the Third International Conference, SP-114, V. M. Malhotra, ed., American Concrete Institute, Farmington Hills, MI, 1989, pp. 1429-1466.

8. Wang, S. D.; Scrivener, K. L.; and Pratt, P. L., “Factors Affecting the Strength of Alkali-Activated Slag,” Cement and Concrete Research, V. 24, No. 6, 1994, pp. 1033-1043. doi: 10.1016/0008-8846(94)90026-4

9. Gluchovsky, V. D., “Slag-Alkali Concretes Based on Fine-Grained Aggregates,” Kiev: Vishcha Shkola, 1981. (in Russian)

10. Bakharev, T.; Sanjayan, J. G.; and Cheng, Y. B., “Sulfate Attack on Alkali-Activated Slag Concrete,” Cement and Concrete Research, V. 32, No. 2, 2002, pp. 211-216. doi: 10.1016/S0008-8846(01)00659-7

11. Deja, J., “Immobilization of Cr 6+, Cd 2+, Zn 2+ and Pb 2+ in Alkali-Activated Slag Binders,” Cement and Concrete Research, V. 32, No. 12, 2002, pp. 1971-1979. doi: 10.1016/S0008-8846(02)00904-3

12. Kim, G. M.; Jang, J. G.; Naeem, F.; and Lee, H. K., “Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash,” International Journal of Concrete Structures and Materials, V. 9, No. 3, 2015, pp. 283-294. doi: 10.1007/s40069-015-0111-x

13. Rha, C. Y.; Kang, S. K.; and Kim, C. E., “Investigation of the Stability of Hardened Slag Paste for the Stabilization/Solidification of Wastes Containing Heavy Metal Ions,” Journal of Hazardous Materials, V. 73, No. 3, 2000, pp. 255-267. doi: 10.1016/S0304-3894(99)00185-5

14. Qian, G.; Sun, D. D.; and Tay, J. H., “Characterization of Mercury-and Zinc-Doped Alkali-Activated Slag Matrix: Part I. Mercury,” Cement and Concrete Research, V. 33, No. 8, 2003, pp. 1251-1256. doi: 10.1016/S0008-8846(03)00045-0

15. Pu, X. C.; Gan, C. C.; Wang, S. D.; and Yang, C. H., “Summary Reports of Research on Alkali-Activated Slag Cement and Concrete,” Chongqing Institute of Architecture and Engineering, China, V. 1-6, 1988.

16. Palacios, M., and Puertas, F., “Effect of Superplasticizer and Shrinkage-Reducing Admixtures on Alkali-Activated Slag Pastes and Mortars,” Cement and Concrete Research, V. 35, No. 7, 2005, pp. 1358-1367. doi: 10.1016/j.cemconres.2004.10.014

17. Palacios, M.; Houst, Y. F.; Bowen, P.; and Puertas, F., “Adsorption of Superplasticizer Admixtures on Alkali-Activated Slag Pastes,” Cement and Concrete Research, V. 39, No. 8, 2009, pp. 670-677. doi: 10.1016/j.cemconres.2009.05.005

18. Talling, B., and Brandstetr, J., “Present State and Future of Alkali-Activated Slag Concretes,” Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: Proceedings of the Third International Concrete, SP-114, V. M. Malhotra, ed., American Concrete Institute, Farmington Hills, MI, 1989, pp. 1519-1546.

19. Faimon, J., “Oscillatory Silicon and Aluminum Aqueous Concentrations during Experimental Aluminosilicate Weathering,” Geochimica et Cosmochimica Acta, V. 60, No. 15, 1996, pp. 2901-2907. doi: 10.1016/0016-7037(96)00130-5

20. You, K. S.; Lee, S. H.; Hwang, S. H.; Kim, H. S.; and Ahn, J. W., “CO2 Sequestration via a Surface-Modified Ground Granulated Blast Furnace Slag Using NaOH Solution,” Materials Transactions, V. 52, No. 10, 2011, pp. 1972-1976. doi: 10.2320/matertrans.M2011110

21. Fernández-Jiménez, A., and Puertas, F., “Setting of Alkali-Activated Slag Cement. Influence of Activator Nature,” Advances in Cement Research, V. 13, No. 3, 2001, pp. 115-121. doi: 10.1680/adcr.2001.13.3.115

22. Brough, A. R.; Holloway, M.; Sykes, J.; and Atkinson, A., “Sodium Silicate-Based Alkali-Activated Slag Mortars: Part II. The Retarding Effect of Additions of Sodium Chloride or Malic Acid,” Cement and Concrete Research, V. 30, No. 9, 2000, pp. 1375-1379. doi: 10.1016/S0008-8846(00)00356-2

23. Chang, J. J., “A Study on the Setting Characteristics of Sodium Silicate-Activated Slag Pastes,” Cement and Concrete Research, V. 33, No. 7, 2003, pp. 1005-1011. doi: 10.1016/S0008-8846(02)01096-7

24. ASTM C191-08, “Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle,” ASTM International, West Conshohocken, PA, 2008, 8 pp.

25. ASTM C1437-07, “Standard Test Method for Flow of Hydraulic Cement Mortar,” ASTM International, West Conshohocken, PA, 2013, 2 pp.

26. ASTM C109/C109M-13, “Standard Test Method for Compressive Strength of Hydraulic Cement Mortars,” ASTM International, West Conshohocken, PA, 2013, 10 pp.

27. Huijgen, W. J., and Comans, R. N., “Carbonation of Steel Slag for CO2 Sequestration: Leaching of Products and Reaction Mechanisms,” Environmental Science & Technology, V. 40, No. 8, 2006, pp. 2790-2796. doi: 10.1021/es052534b

28. Poon, C. S.; Lam, L.; and Wong, Y. L., “A Study on High Strength Concrete Prepared with Large Volumes of Low Calcium Fly Ash,” Cement and Concrete Research, V. 30, No. 3, 2000, pp. 447-455. doi: 10.1016/S0008-8846(99)00271-9

29. Puertas, F.; Fernández-Jiménez, A.; and Blanco-Varela, M. T., “Pore Solution in Alkali-Activated Slag Cement Pastes. Relation to the Composition and Structure of Calcium Silicate Hydrate,” Cement and Concrete Research, V. 34, No. 1, 2004, pp. 139-148. doi: 10.1016/S0008-8846(03)00254-0

30. Jones, L., “Interference Mechanisms in Waste Stabilization/Solidification Processes,” Journal of Hazardous Materials, V. 24, No. 1, 1990, pp. 83-88. doi: 10.1016/0304-3894(90)80005-O

31. Conner, J. R., Chemical Fixation and Solidification of Hazardous Wastes, Van Nostrand Reinhold, New York, 1990.

32. Aydın, S., and Baradan, B., “Effect of Activator Type and Content on Properties of Alkali-Activated Slag Mortars,” Composites. Part B, Engineering, V. 57, 2 2014, pp. 166-172. doi: 10.1016/j.compositesb.2013.10.001

33. Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; and Vazquez, T., “Alkali-Activated Fly Ash/Slag Cements: Strength Behaviour and Hydration Products,” Cement and Concrete Research, V. 30, No. 10, 2000, pp. 1625-1632. doi: 10.1016/S0008-8846(00)00298-2

34. Živica, V., “Effects of Type and Dosage of Alkaline Activator and Temperature on the Properties of Alkali-Activated Slag Mixtures,” Construction and Building Materials, V. 21, No. 7, 2007, pp. 1463-1469. doi: 10.1016/j.conbuildmat.2006.07.002

35. Roussel, N., Understanding the Rheology of Concrete, Elsevier, Amsterdam, the Netherlands, 2011, 384 pp.

36. Haha, M. B.; Le Saout, G.; Winnefeld, F.; and Lothenbach, B., “Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-Furnace Slags,” Cement and Concrete Research, V. 41, No. 3, 2011, pp. 301-310. doi: 10.1016/j.cemconres.2010.11.016

37. Chen, W., and Brouwers, H. J. H., “The Hydration of Slag, Part 1: Reaction Models for Alkali-Activated Slag,” Journal of Materials Science, V. 42, No. 2, 2007, pp. 428-443. doi: 10.1007/s10853-006-0873-2

38. Wang, S.-D., “Alkaline Activation of Slag,” PhD thesis, Imperial College, University of London, London, UK, 1995.

39. Song, S.; Sohn, D.; Jennings, H. M.; and Mason, T. O., “Hydration of Alkali-Activated Ground Granulated Blast Furnace Slag,” Journal of Materials Science, V. 35, No. 1, 2000, pp. 249-257. doi: 10.1023/A:1004742027117

40. Gruskovnjak, A.; Lothenbach, B.; Holzer, L.; Figi, R.; and Winnefeld, F., “Hydration of Alkali-Activated Slag: Comparison with Ordinary Portland Cement,” Advances in Cement Research, V. 18, No. 3, 2006, pp. 119-128. doi: 10.1680/adcr.2006.18.3.119

41. Bernal, S. A.; de Gutiérrez, R. M.; Pedraza, A. L.; Provis, J. L.; Rodriguez, E. D.; and Delvasto, S., “Effect of Binder Content on the Performance of Alkali-Activated Slag Concretes,” Cement and Concrete Research, V. 41, No. 1, 2011, pp. 1-8. doi: 10.1016/j.cemconres.2010.08.017

42. Mehta, P. K., and Monteiro, P. J., Concrete, Microstructure, Properties, and Materials, The McGraw-Hill Companies Inc., New York., 1993.

43. Glukhovsky, V. D.; Rostovskaja, G. S.; and Rumyna, G. V., “High Strength Slag Alkaline Cements,” Proceedings of the Seventh International Congress on the Chemistry of Cement, V. 3, 1980, pp. 164-168.

44. Kim, Y. T., and Do, T. H., “Effect of Bottom Ash Particle Size on Strength Development in Composite Geomaterial,” Engineering Geology, V. 139, 2012, pp. 85-91. doi: 10.1016/j.enggeo.2012.04.012

45. Douglas, E., and Brandstetr, J., “A Preliminary Study on the Alkali Activation of Ground Granulated Blast-Furnace Slag,” Cement and Concrete Research, V. 20, No. 5, 1990, pp. 746-756. doi: 10.1016/0008-8846(90)90008-L

46. Atiş, C. D.; Bilim, C.; Çelik, Ö.; and Karahan, O., “Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar,” Construction and Building Materials, V. 23, No. 1, 2009, pp. 548-555. doi: 10.1016/j.conbuildmat.2007.10.011

47. Chi, M. C., and Liu, Y. C., “Effects of Fly Ash/Slag Ratio and Liquid/Binder Ratio on Strength of Alkali-Activated Fly Ash/Slag Mortars,” Applied Mechanics and Materials, V. 377, 2013, pp. 50-54. doi: 10.4028/www.scientific.net/AMM.377.50

48. Chi, M. C.; Chang, J. J.; and Huang, R., “Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar,” Advances in Civil Engineering, V. 2012, 2012, pp. 1-7. doi: 10.1155/2012/579732


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer