Title:
Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions
Author(s):
Shyh-Jiann Hwang, Ren-Jie Tsai, Weng-Kin Lam, and Jack P. Moehle
Publication:
Structural Journal
Volume:
114
Issue:
5
Appears on pages(s):
1239-1247
Keywords:
compressive softening effect; diagonal compression; discontinuity region; reinforced concrete; shear; strength; strut-and-tie
DOI:
10.14359/51689787
Date:
9/1/2017
Abstract:
A geometric discontinuity caused by abrupt changes in cross-sectional dimensions and a force discontinuity caused by concentrated loads results in discontinuity regions due to the disturbance in the flow of internal forces. A softened strut-and-tie model has been developed for determining the shear strength of discontinuity regions that fail under diagonal compression. The softened strut-and-tie model requires complicated computations, consequently making it challenging to apply in engineering practice. In this paper, a further simplification of the softened strut-and-tie model is proposed to facilitate design practice. Strength predictions of the simplified model correlate well with 449 test results of deep beams, corbels, squat walls, and beam-column joints available from the
literature. The simplified model incorporates the shear-resisting mechanisms as postulated by the softened strut-and-tie model, and it is a function of the concrete compressive strength, steel yield strength, shear reinforcement ratio, and geometric configuration of the discontinuity region.
Related References:
1. Ritter, W., “Die Bauweise Hennebique,” Schweizerische Bauzeitung, Zürich, V. 33, No. 7, Feb. 1899, pp. 59-61.
2. Mörsch, E., Concrete Steel Construction, translated by E. P. Goodrich, McGraw-Hill, New York, 1909, 368 pp.
3. Thürlimann, B.; Marti, P.; Pralong, J.; Ritz, P.; and Zimmerli, B., Anwendung der Plastizitätstheorie auf Stahlbeton, Institute of Structural Engineering, ETH Zürich, Autographie zum Fortbildungskurs für Bauingenieure, 1983.
4. Marti, P., “Basic Tools of Reinforced Concrete Beam Design,” ACI Journal Proceedings, V. 82, No. 1, Jan.-Feb. 1985, pp. 46-56.
5. Müller, P., “Plastische Berechnung von Stahlbetonscheiben und Balken,” Report No. 83, Institute of Structural Engineering, ETH Zürich, Birkhäuser Basel, Stuttgart, Germany, 1978.
6. Schlaich, J.; Schäfer, K.; and Jennewein, M., “Toward a Consistent Design of Structural Concrete,” PCI Journal, V. 32, No. 3, 1987, pp. 74-150. doi: 10.15554/pcij.05011987.74.150
7. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 520 pp.
8. Joint ASCE-ACI Committee 445, “Recent Approaches to Shear Design of Structural Concrete,” Journal of Structural Engineering, ASCE, V. 124, No. 12, 1998, pp. 1375-1417. doi: 10.1061/(ASCE)0733-9445(1998)124:12(1375)
9. Hsu, T. T. C., “Toward a Unified Nomenclature for Reinforced-Concrete Theory,” Journal of Structural Engineering, ASCE, V. 122, No. 3, Mar. 1996, pp. 275-283.
10. Vecchio, F. J., and Collins, M. P., “Compression Response of Cracked Reinforced Concrete,” Journal of Structural Engineering, ASCE, V. 119, No. 12, 1993, pp. 3590-3610. doi: 10.1061/(ASCE)0733-9445(1993)119:12(3590)
11. Zhang, L. X. B., and Hsu, T. T. C., “Behavior and Analysis of 100 MPa Concrete Membrane Elements,” Journal of Structural Engineering, ASCE, V. 124, No. 1, 1998, pp. 24-34. doi: 10.1061/(ASCE)0733-9445(1998)124:1(24)
12. Hwang, S. J., and Lee, H. J., “Analytical Model for Predicting Shear Strengths of Exterior Reinforced Concrete Beam-Column Joints for Seismic Resistance,” ACI Structural Journal, V. 96, No. 5, Sept.-Oct. 1999, pp. 846-858.
13. Hwang, S. J., and Lee, H. J., “Analytical Model for Predicting Shear Strengths of Interior Reinforced Concrete Beam-Column Joints for Seismic Resistance,” ACI Structural Journal, V. 97, No. 1, Jan.-Feb. 2000, pp. 35-44.
14. Hwang, S. J.; Lu, W. Y.; and Lee, H. J., “Shear Strength Prediction for Deep Beams,” ACI Structural Journal, V. 91, No. 3, May-June 2000, pp. 367-376.
15. Hwang, S. J.; Lu, W. Y.; and Lee, H. J., “Shear Strength Prediction for Reinforced Concrete Corbels,” ACI Structural Journal, V. 97, No. 4, July-Aug. 2000, pp. 543-552.
16. Hwang, S. J.; Fang, W. H.; Lee, H. J.; and Yu, H. W., “Analytical Model for Predicting Shear Strength of Squat Walls,” Journal of Structural Engineering, ASCE, V. 127, No. 1, 2001, pp. 43-50. doi: 10.1061/(ASCE)0733-9445(2001)127:1(43)
17. Hwang, S. J., and Lee, H. J., “Strength Prediction for Discontinuity Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE, V. 128, No. 12, 2002, pp. 1519-1526. doi: 10.1061/(ASCE)0733-9445(2002)128:12(1519)
18. Schäfer, K., “Strut-and-Tie Models for Design of Structural Concrete,” Notes of Workshop, National Cheng Kung University, Tainan, Taiwan, Mar. 1996, 140 pp.
19. Jennewein, M., and Schäfer, K., “Standardisierte Nachweise von häufigen D-Bereichen,” DAfStb. Heft No. 430, Beuth-Verlag, Berlin, Germany, 1992.
20. Zhang, L., and Jirsa, J. O., “A Study of Shear Behavior of Reinforced Concrete Beam-Column Joints,” PMFSEL Report No. 82-1, University of Texas at Austin, Austin, TX, Feb. 1982, 118 pp.
21. Lim, E., and Hwang, S. J., “Modeling of the Strut-and-Tie Parameters of Deep Beams for Shear Strength Prediction,” Engineering Structures, V. 108, 2016, pp. 104-112. doi: 10.1016/j.engstruct.2015.11.024
22. CEB-FIP Model Code, “fib Model Code for Concrete Structures 2010,” Fédération Internationale du Béton, Wilhelm Ernst & Sohn, Berlin, Germany, 2013.
23. Tsai, R. J., “Prediction of Lateral Load Deflection Curve of Reinforced Concrete Wall with Openings,” master thesis, Department of Civil Engineering, National Taiwan University, 2015, 181 pp. (in Chinese)
24. Paulay, T., and Priestley, M. J. N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, Inc., New York, 1992, 744 pp.
25. Li, Y. A., and Hwang, S. J., “Prediction of Lateral Load Displacement Curves for Reinforced Concrete Short Columns Failed in Shear,” Journal of Structural Engineering, ASCE, V. 143, No. 2, 2017, doi: 10.1061/(ASCE)ST.1943-541X.0001656