Title:
Incorrect Air Void Parameters in Fly Ash Concretes
Author(s):
Aneta Nowak-Michta
Publication:
Materials Journal
Volume:
114
Issue:
3
Appears on pages(s):
365-374
Keywords:
air-entrained concrete; air entrainment; air void analysis; air void parameters; fly ash; loss on ignition
DOI:
10.14359/51689675
Date:
5/1/2017
Abstract:
The influence of fly ash on air void systems in hardened concretes is analyzed in the paper. The tests of air voids characteristics in hardened concretes were conducted on an air void analyzer. The tests were performed on 56 non-air-entrained and air-entrained fly ash concretes with varied losses on ignition, percentages of cement replacement with fly ash, and water-cementitious materials ratio (w/cm). The results show that the total content of air in airentrained concretes with fly ash addition equals the sum of air content coming from air entrainment and the pores in grains of fly ashes. The analysis of the tests results showed that the air-void parameters are disturbed by fly ash. The paper includes a multistep procedure for the explanation why and how fly ash affects the air-void parameters in the hardened concretes. On this basis, it has been proved that the total air content in hardened concretes with fly ash is the sum of the contents of air voids and the pores contained in the grains of fly ash.
Related References:
1. ACI Committee 201, “Guide to Durable Concrete (ACI 201.2R-01),” American Concrete Institute, Farmington Hills, MI, 2001, 41 pp.
2. Fagerlund, G., “A Service Life Model for Internal Frost Damage in Concrete,” Lund University, Lund, Sweden, 2004.
3. Fagerlund, G., Durability of Concrete Structures, Arkady, Warsaw, Poland, 1997.
4. Neville, A. M., Properties of Concrete, fifth edition, Stowarzyszenie Producentów Cementu, Poland, 2012.
5. Pigeon, M.; Marchand, J.; and Pleau, R., “Frost Resistant Concrete,” Construction and Building Materials, V. 10, No. 5, 1996, pp. 339-348. doi: 10.1016/0950-0618(95)00067-4
6. ACI Committee E-701, “Chemical Admixtures for Concrete (ACI E4-03),” American Concrete Institute, Farmington Hills, MI, 2003, 16 pp.
7. Du, L., and Folliard, K. J., “Mechanisms of Air Entrainment in Concrete,” Cement and Concrete Research, V. 35, No. 8, 2005, pp. 1463-1471. doi: 10.1016/j.cemconres.2004.07.026
8. Ramachandran, V. S., ed., Concrete Admixtures Handbook, second edition, Elsevier, 1996, 1183 pp.
9. Olokun, F. A., “Fly Ash Concrete Mixture Design and the Water-Cement Ratio Law,” ACI Materials Journal, V. 91, No. 4, July-Aug. 1994, pp. 362-371.
10. ZTV Beton–StB 01, “Bundesministerium fur Verkehr, Abteilung Straßenbau, Zusätzliche Technische Vertragsbedingungen und Richtlinien für den Bau von Fahrbahndecken aus Beton,” FGSV Verlag, Köln, 2001.
11. EN 12350-7:2011, “Testing Fresh Concrete. Part 7: Air Content. Pressure Methods,” European Committee for Standardization, Brussels, Belgium, 2011.
12. EN 480-11:2008, “Admixtures for Concrete, Mortar and Grout – Test Methods – Part 11: Determination of Air Voids Characteristics in Hardened Concrete,” European Committee for Standardization, Brussels, Belgium, 2008.
13. Chatterji, S., “Freezing of Air-Entrained Cement-Based Materials and Specific Actions of Air-Entraining Agents,” Cement and Concrete Composites, V. 25, No. 7, 2003, pp. 759-765. doi: 10.1016/S0958-9465(02)00099-9
14. Rusin, Z., Technology of Frost-Resistant Concretes, Polski Cement, Poland, 2002.
15. Luehr, H. P., “Zur Verwendung von Steinkohlenflugashe (Elektrofilterstaub) als Betonzusatzstoff,” Betonwerk und Fertigteil-Technik, V. 7, 1972, pp. 511-517.
16. EN 450-1:2012, “Fly Ash for Concrete. Part 1: Definition, Specifications and Conformity Criteria,” European Committee for Standardization, Brussels, Belgium, 2012.
17. Bisaillon, A., and Malhotra, V. M., “Performance of High-Volume Fly Ash Concrete in Large Experimental Monoliths,” ACI Materials Journal, V. 91, No. 2, Mar.-Apr. 1994, pp. 178-187.
18. Bouzouba, N.; Fournier, B.; Malhotra, V. M.; and Golden, D. M., “Mechanical Properties and Durability of Concrete Made with High-Volume Fly Ash Blended Cement Produced in Cement Plant,” ACI Materials Journal, V. 99, No. 6, Nov.-Dec. 2002, pp. 560-567.
19. Gebler, S., and Klieger, P., “Effect of Fly Ash on the Air-Void Stability of Concrete,” First International Conference on the Use of Fly Ash, Silica Fume, Slag, and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, Farmington Hills, MI, 1983, pp. 103-142.
20. Meininger, R. C., “Use of Fly Ash in Air-Entrained Concrete,” Report of Recent NSGA-NRMCA Research Laboratory Studies, National Ready Mixed Concrete Association, Silver Spring, MD, Feb. 1981.
21. Nagataki, N.; Ohga, H.; and Wada, M., “Freeze-Thaw Resistance of Autoclaved Fly Ash Concrete,” CAJ Review of the 37th General Meeting, Technical Session, 1984, pp. 266-269.
22. Pistilly, U. F., “Air-Void Parameters Developed by Air-Entraining Admixtures, as Influenced by Soluble Alkalis from Fly Ash and Portland Cement,” ACI Journal Proceedings, V. 80, No. 3, Mar. 1983, pp. 217-222.
23. Soretz, S, “Beitrag zum Frostwiderstand von Flugaschezementen,” Material und Technik, No. 3, 1980.
24. Sturrup, V. R.; Hooton, R. D.; and Clandenning, T. G., “Durability of Fly Ash Concrete,” First International Conference on the Use of Fly Ash, Silica Fume, Slag, and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, Farmington Hills, MI, 1983, pp. 71-86.
25. Virtanen, J., “Freeze-Thaw Resistance of Concrete Containing Blast-Furnace Slag, Fly Ash or Condensed Silica Fume,” First International Conference on the Use of Fly Ash, Silica Fume, Slag, and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, Farmington Hills, MI, 1983, pp. 923-942.
26. Nowak-Michta, A., “Compatibility between Fly Ashes and Admixtures,” Zeszyty Naukowe Politechniki Śląskiej Budownictwo, V. 112, 2007, pp. 177-184.
27. Wesche, K., Fly Ash in Concrete: Properties and Performance, E&FN Spon, RILEM, 1991.
28. Bilodeau, A., and Malhotra, V. M., “High-Volume Fly Ash System: Concrete Solution for Sustainable Development,” ACI Materials Journal, V. 97, No. 1, Jan.-Feb. 2000, pp. 41-48.
29. Bastian, S., and Dobrowolski, S., “Influence of Admixtures and Additions on Freeze-Thaw Durability of Concretes,” Cement, Wapno, Beton, V. 5, 2000, pp. 203-207.
30. Clandenning, T. G., and Durie, N. D., “Properties and Use of Fly Ash from a Steam Plant Operating under Variable Load,” ASTM Proceeding, V. 62, 1962, pp. 1019-1040.
31. Ellis, W. E., “For Durable Concrete, Fly Ash Does Not ‘Replace’ Cement,” Concrete International, V. 15, No. 7, July 1992, pp. 47-51.
32. Giergiczny, Z., and Sokołowski, M., “Freeze-Thaw Durability of Concretes with Cements with Mineral Additions,” VIII Sympozjum naukowo-techniczne — Reologia w technologii betonu, Gliwice, Poland 2006, pp. 19-30.
33. Lane, R. O., “Effects of Fly Ash on Freshly Mixed Concrete,” Concrete International, V. 6, No. 10, Oct. 1983, pp. 50-52.
34. Larson, T. D., “Air Entrainment and Durability Aspects of Fly Ash Concrete,” ASTM Proceeding, V. 64, 1964, pp. 866-868.
35. Naik, T. R.; Ramme, B. W.; Kraus, R. N.; and Siddique, R., “Long-Term Performance of High-Volume Fly Ash Concrete Pavements,” ACI Materials Journal, V. 100, No. 2, Mar.-Apr. 2003, pp. 150-155.
36. Nasser, K. W., and Lai, P. S. H., “Resistance of Fly Ash Concrete to Freezing and Thawing,” Fourth International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, SP-132, V. M. Malhotra, ed., American Concrete Institute, Farmington Hills, MI, 1992, pp. 205-226.
37. Smith, J. A., “Design of Fly Ash Concretes,” Proceedings of the Institution of Civil Engineers, V. 36, 1967, London, UK, pp. 769-790.
38. Wogrin, A., “Verwendbarkeit der Österreichischen Flugasche als Teil-weises Zementerastzmittel,” Oesterrsichische Ingenieur Zeitschrift, V. 3, 1960, pp. 403-408.
39. Yuan, R. L., and Cook, J. E., “Study of a Class C Fly Ash Concrete,” First International Conference on the Use of Fly Ash, Silica Fume, Slag, and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, Farmington Hills, MI, 1983, pp. 307-320.
40. Nowak-Michta, A., “Air Void System in Air-Entrained Hardened Concretes with Siliceous Fly Ash Addition,” PhD thesis, Cracow University of Technology, Poland, 2008.
41. EN 12350-2:2011, “Testing Fresh Concrete. Part 2: Slump Test,” European Committee for Standardization, Brussels, Belgium, 2011.
42. EN 12390-2:2011, “Testing Hardened Concrete. Part 2: Making and Curing Specimens for Strength Tests,” European Committee for Standardization, Brussels, Belgium, 2011.
43. Jakobsen, U., “Preparation of Concrete Samples for Air Void Analysis” Newsletter CXI 05, 2003, www.concrete-experts.com/pages/Newsletter/05/05.htm. (last accessed July 2014)
44. Elsen, J.; Lens, N.; Vyncke, J.; Aarre, T.; Quenard, D.; and Smolej, V., “Quality Assurance and Quality-Control of Air Entrained Concrete,” Cement and Concrete Research, V. 24, No. 7, 1994, pp. 1267-1276. doi: 10.1016/0008-8846(94)90111-2
45. Pigeon, M., and Pleau, R., Durability of Concrete in Cold Climates, Modern Concrete Technology Series, E&FN Spon, London, UK, 1995.
46. Powers, T. C., “The Air Requirement of Frost-Resistant Concrete,” Proceedings of the Highway Research Board, V. 29, 1949, pp. 184-211.
47. Gao, P. W.; Wu, S. X.; Lin, P. H.; Wu, Z. R.; and Tang, M. S., “The Characteristics of Air Void and Frost Resistance of RCC with Fly Ash and Expansive Agent,” Construction and Building Materials, V. 20, No. 8, 2006, pp. 586-590. doi: 10.1016/j.conbuildmat.2005.01.039
48. Nowak-Michta, A., and Urban, M., “The Influence of Fly Ash Properties on Rheological Parameters of Concrete Mix,” Fifth Scientific-Technical Conference on Material Problems in Civil Engineering – MATBUD 2007, Cracow, Poland, 2007, pp. 406-414.