Title:
Energy Balance Method for Modeling Ultimate Strain of Confined Concrete
Author(s):
Yu-Fei Wu and Yugui Cao
Publication:
Structural Journal
Volume:
114
Issue:
2
Appears on pages(s):
373-381
Keywords:
concrete columns; confinement; energy method; fiber-reinforced polymer (FRP); modeling; ultimate strain
DOI:
10.14359/51689429
Date:
3/1/2017
Abstract:
An energy balance method has been widely used in extant literature to derive the ultimate axial strain of confined concrete columns. Researchers have noted that the method yields unrealistic results compared to experimental data when applied to fiber-reinforced polymer (FRP) confined concrete columns. Through theoretical analyses and extensive case evaluations, this work discloses that the original equation of energy balance is invalid, not only for FRP-confined concrete columns but also for concrete columns confined by any material including steel stirrups. Rational reasoning shows that to achieve the energy balance, a modification factor related to confinement should be applied. Using the modified energy balance method, a new model for the ultimate axial strain of FRP-confined circular concrete columns is developed. Compared with the existing models, the new model has a smaller error and better correlation with test results.
Related References:
1. Xiao, Y., and Wu, H., “Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets,” Journal of Materials in Civil Engineering, ASCE, V. 12, No. 2, 2000, pp. 139-146. doi: 10.1061/(ASCE)0899-1561(2000)12:2(139)
2. Shehata, I. A.; Carneiro, L. A.; and Shehata, L. C., “Strength of Short Concrete Columns Confined with CFRP Sheets,” Materials and Structures, V. 35, No. 1, 2002, pp. 50-58. doi: 10.1007/BF02482090
3. Youssef, M. N.; Feng, M. Q.; and Mosallam, A. S., “Stress-Strain Model for Concrete Confined by FRP Composites,” Composites. Part B, Engineering, V. 38, No. 5, 2007, pp. 614-628. doi: 10.1016/j.compositesb.2006.07.020
4. Chaallal, O.; Hassan, M.; and Shahawy, M., “Confinement Model for Axially Loaded Short Rectangular Columns Strengthened with Fiber-Reinforced Polymer Wrapping,” ACI Structural Journal, V. 100, No. 2, Mar.-Apr. 2003, pp. 215-221.
5. Harajli, M. H.; Hantouche, E.; and Soudki, K., “Stress-Strain Model for Fiber-Reinforced Polymer Jacketed Concrete Columns,” ACI Structural Journal, V. 103, No. 5, Sept.-Oct. 2006, pp. 672-682.
6. Lam, L., and Teng, J. G., “Design-Oriented Stress-Strain Model for FRP-Confined Concrete,” Construction & Building Materials, V. 17, No. 6, 2003, pp. 471-489. doi: 10.1016/S0950-0618(03)00045-X
7. Lam, L., and Teng, J. G., “Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Rectangular Columns,” Journal of Reinforced Plastics and Composites, V. 22, No. 13, 2003, pp. 1149-1186. doi: 10.1177/0731684403035429
8. Saafi, M.; Toutanji, H.; and Li, Z., “Behavior of Concrete Columns Confined with Fiber-Reinforced Polymer Tubes,” ACI Materials Journal, V. 96, No. 4, July-Aug. 1999, pp. 500-510.
9. Samaan, M.; Mirmiran, A.; and Shahawy, M., “Model of Concrete Confined by Fiber Composites,” Journal of Structural Engineering, ASCE, V. 124, No. 9, 1998, pp. 1025-1031. doi: 10.1061/(ASCE)0733-9445(1998)124:9(1025)
10. Ilki, A.; Peker, O.; Karamuk, E.; Demir, C.; and Kumbasar, N., “FRP Retrofit of Low and Medium Strength Circular and Rectangular Reinforced Concrete Columns,” Journal of Materials in Civil Engineering, ASCE, V. 20, No. 2, 2008, pp. 169-188. doi: 10.1061/(ASCE)0899-1561(2008)20:2(169)
11. Bisby, L. A.; Dent, A. J.; and Green, M. F., “Comparison of Confinement Models for Fiber-Reinforced Polymer-Wrapped Concrete,” ACI Structural Journal, V. 102, No. 1, Jan.-Feb. 2005, pp. 62-72.
12. Teng, J. G., and Lam, L., “Behavior and Modeling of Fiber Reinforced Polymer-Confined Concrete,” Journal of Structural Engineering, ASCE, V. 130, No. 11, 2004, pp. 1713-1723. doi: 10.1061/(ASCE)0733-9445(2004)130:11(1713)
13. Berthet, J.; Ferrier, E.; and Hamelin, P., “Compressive Behavior of Concrete Externally Confined by Composite Jackets: Part B: Modeling,” Construction and Building Materials, V. 20, No. 5, 2006, pp. 338-347. doi: 10.1016/j.conbuildmat.2005.01.029
14. Wu, G.; Wu, Z.; and Lü, Z., “Design-Oriented Stress-Strain Model for Concrete Prisms Confined with FRP Composites,” Construction and Building Materials, V. 21, No. 5, 2007, pp. 1107-1121. doi: 10.1016/j.conbuildmat.2005.12.014
15. Toutanji, H., “Stress-Strain Characteristics of Concrete Columns Externally Confined with Advanced Fiber Composite Sheets,” ACI Materials Journal, V. 96, No. 3, May-June 1999, pp. 397-404.
16. Lim, J. C., and Ozbakkaloglu, T., “Design Model for FRP-Confined Normal- and High-Strength Concrete Square and Rectangular Columns,” Magazine of Concrete Research, V. 66, No. 20, 2014, pp. 1020-1035. doi: 10.1680/macr.14.00059
17. Mirmiran, A., and Shahawy, M., “Behavior of Concrete Columns Confined by Fiber Composites,” Journal of Structural Engineering, ASCE, V. 123, No. 5, 1997, pp. 583-590. doi: 10.1061/(ASCE)0733-9445(1997)123:5(583)
18. Jiang, T., and Teng, J. G., “Analysis-Oriented Stress-Strain Models for FRP-Confined Concrete,” Engineering Structures, V. 29, No. 11, 2007, pp. 2968-2986. doi: 10.1016/j.engstruct.2007.01.010
19. Fam, A. Z., and Rizkalla, S. H., “Confinement Model for Axially Loaded Concrete Confined by Circular Fiber-Reinforced Polymer Tubes,” ACI Structural Journal, V. 98, No. 4, July-Aug. 2001, pp. 451-461.
20. Harries, K. A., and Kharel, G., “Behavior and Modeling of Concrete Subject to Variable Confining Pressure,” ACI Materials Journal, V. 99, No. 2, Mar.-Apr. 2002, pp. 180-189.
21. Xiao, Q.; Teng, J. G.; and Yu, T., “Behavior and Modeling of Confined High-Strength Concrete,” Journal of Composites for Construction, ASCE, V. 14, No. 3, 2010, pp. 249-259. doi: 10.1061/(ASCE)CC.1943-5614.0000070
22. Spoelstra, M. R., and Monti, G., “FRP-Confined Concrete Model,” Journal of Composites for Construction, ASCE, V. 3, No. 3, 1999, pp. 143-150. doi: 10.1061/(ASCE)1090-0268(1999)3:3(143)
23. Wei, Y. Y., and Wu, Y. F., “Unified Stress-Strain Model of Concrete for FRP-Confined Columns,” Construction and Building Materials, V. 26, No. 1, 2012, pp. 381-392. doi: 10.1016/j.conbuildmat.2011.06.037
24. Mander, J. B.; Priestley, M. J. N.; and Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, V. 114, No. 8, 1988, pp. 1804-1826. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
25. Saadatmanesh, H.; Ehsani, M. R.; and Li, M. W., “Strength and Ductility of Concrete Columns Externally Reinforced with Fiber Composite Straps,” ACI Structural Journal, V. 91, No. 4, July-Aug. 1994, pp. 434-447.
26. Purba, B. K., and Mufti, A. A., “Investigation of the Behavior of Circular Concrete Columns Reinforced with Carbon Fiber Reinforced Polymer (CFRP) Jackets,” Canadian Journal of Civil Engineering, V. 26, No. 5, 1999, pp. 590-596. doi: 10.1139/l99-022
27. Toutanji, H., and Saafi, M., “Stress-Strain Behavior of Concrete Columns Confined with Hybrid Composite Materials,” Materials and Structures, V. 35, No. 6, 2002, pp. 338-347. doi: 10.1007/BF02483153
28. Campione, G., and Miraglia, N., “Strength and Strain Capacities of Concrete Compression Members Reinforced with FRP,” Cement and Concrete Composites, V. 25, No. 1, 2003, pp. 31-41. doi: 10.1016/S0958-9465(01)00048-8
29. Matthys, S.; Toutanji, H.; and Taerwe, L., “Stress-Strain Behavior of Large-Scale Circular Columns Confined with FRP Composites,” Journal of Structural Engineering, ASCE, V. 132, No. 1, 2006, pp. 123-133. doi: 10.1061/(ASCE)0733-9445(2006)132:1(123)
30. Pham, T. M., and Hadi, M. N., “Strain Estimation of CFRP-Confined Concrete Columns Using Energy Approach,” Journal of Composites for Construction, ASCE, V. 17, No. 6, 2013, p. 04013001 doi: 10.1061/(ASCE)CC.1943-5614.0000397
31. Wu, Y. F., and Jiang, J. F., “Effective Strain of FRP for Confined Circular Concrete Columns,” Composite Structures, V. 95, 2013, pp. 479-491. doi: 10.1016/j.compstruct.2012.08.021
32. Ozbakkaloglu, T., and Lim, J. C., “Axial Compressive Behavior of FRP-Confined Concrete: Experimental Test Database and a New Design-Oriented Model,” Composites. Part B, Engineering, V. 55, 2013, pp. 607-634. doi: 10.1016/j.compositesb.2013.07.025
33. Chen, J. F.; Ai, J.; and Stratford, T. J., “Effect of Geometric Discontinuities on Strains in FRP-Wrapped Columns,” Journal of Composites for Construction, ASCE, V. 14, No. 2, 2010, pp. 136-145. doi: 10.1061/(ASCE)CC.1943-5614.0000053
34. Chen, J. F.; Li, S. Q.; and Bisby, L. A., “Factors Affecting the Ultimate Condition of FRP-Wrapped Concrete Columns,” Journal of Composites for Construction, ASCE, V. 17, No. 1, 2013, pp. 67-78. doi: 10.1061/(ASCE)CC.1943-5614.0000314
35. Lignola, G. P.; Prota, A.; Manfredi, G.; and Cosenza, E., “Effective Strain in FRP Jackets on Circular RC Columns,” Proceedings of the 4th International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland.
36. Lin, G., and Teng, J. G., “FRP-Confined Concrete in Square Columns: An Advanced Stress-Strain Model Based on a New Approach,” Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013), Melbourne, Australia.
37. Harries, K. A., and Carey, S. A., “‘Shape and Gap’ Effects on the Behavior of Variably Confined Concrete,” Cement and Concrete Research, V. 33, No. 6, 2003, pp. 881-890. doi: 10.1016/S0008-8846(02)01085-2
38. Smith, S. T.; Kim, S. J.; and Zhang, H., “Behavior and Effectiveness of FRP Wrap in the Confinement of Large Concrete Cylinders,” Journal of Composites for Construction, ASCE, V. 14, No. 5, 2010, pp. 573-582. doi: 10.1061/(ASCE)CC.1943-5614.0000119
39. Pham, T. M.; Hadi, M. N.; and Youssef, J., “Optimized FRP Wrapping Schemes for Circular Concrete Columns under Axial Compression,” Journal of Composites for Construction, ASCE, V. 19, No. 6, 2015, 04015015. doi: 10.1061/(ASCE)CC.1943-5614.0000571
40. Bisby, L. A., and Take, W. A., “Strain Localisations in FRP-Confined Concrete: New Insights,” Proceedings of the Institution of Civil Engineers. Structures and Buildings, V. 162, No. 5, 2009, pp. 301-309. doi: 10.1680/stbu.2009.162.5.301
41. Barrington, J.; Dickson, D.; Bisby, L.; and Stratford, T., “Strain Development and Hoop Strain Efficiency in FRP Confined Square Columns,” 10th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, SP-275, American Concrete Institute, Farmington Hills, MI, 2011, pp. 1-20.
42. Li, P.; Wu, Y. F.; and Gravina, R., “Cyclic Response of FRP-Confined Concrete with Post-Peak Strain Softening Behavior,” Construction and Building Materials, V. 123, Oct, 2016, pp. 814-828. doi: 10.1016/j.conbuildmat.2016.07.065
43. Fahmy, M. F., and Wu, Z., “Evaluating and Proposing Models of Circular Concrete Columns Confined with Different FRP Composites,” Composites. Part B, Engineering, V. 41, No. 3, 2010, pp. 199-213. doi: 10.1016/j.compositesb.2009.12.001
44. Popovics, S., “A Numerical Approach to the Complete Stress-Strain Curve of Concrete,” Cement and Concrete Research, V. 3, No. 5, 1973, pp. 583-599. doi: 10.1016/0008-8846(73)90096-3
45. Jiang, J. F., and Wu, Y. F., “Identification of Material Parameters for Drucker-Prager Plasticity Model for FRP Confined Circular Concrete Columns,” International Journal of Solids and Structures, V. 49, No. 3, 2012, pp. 445-456. doi: 10.1016/j.ijsolstr.2011.10.002
46. Jiang, J. F., and Wu, Y. F., “Characterization of Yield Surfaces for FRP-Confined Concrete,” Journal of Engineering Mechanics, ASCE, V. 140, No. 12, 2014, p. 04014096 doi: 10.1061/(ASCE)EM.1943-7889.0000811
47. Wu, Y. F., and Wei, Y., “General Stress-Strain Model for Steel- and FRP-Confined Concrete,” Journal of Composites for Construction, ASCE, V. 19, No. 4, 2015, p. 04014069 doi: 10.1061/(ASCE)CC.1943-5614.0000511
48. Wu, Y. F., and Wei, Y. Y., “Effect of Cross-Sectional Aspect Ratio on the Strength of CFRP-Confined Rectangular Concrete Columns,” Engineering Structures, V. 32, No. 1, 2010, pp. 32-45. doi: 10.1016/j.engstruct.2009.08.012
49. Berthet, J.; Ferrier, E.; and Hamelin, P., “Compressive Behavior of Concrete Externally Confined by Composite Jackets. Part A: Experimental Study,” Construction and Building Materials, V. 19, No. 3, 2005, pp. 223-232. doi: 10.1016/j.conbuildmat.2004.05.012
50. Wang, L. M., and Wu, Y. F., “Effect of Corner Radius on the Performance of CFRP-Confined Square Concrete Columns: Test,” Engineering Structures, V. 30, No. 2, 2008, pp. 493-505. doi: 10.1016/j.engstruct.2007.04.016
51. Akogbe, R. K.; Liang, M.; and Wu, Z. M., “Size Effect of Axial Compressive Strength of CFRP Confined Concrete Cylinders,” International Journal of Concrete Structures and Materials, V. 5, No. 1, 2011, pp. 49-55. doi: 10.4334/IJCSM.2011.5.1.049
52. Lam, L., and Teng, J. G., “Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete,” Journal of Composites for Construction, ASCE, V. 8, No. 6, 2004, pp. 539-548. doi: 10.1061/(ASCE)1090-0268(2004)8:6(539)
53. Almusallam, T. H., “Behavior of Normal and High-Strength Concrete Cylinders Confined with E-Glass/Epoxy Composite Laminates,” Composites. Part B, Engineering, V. 38, No. 5, 2007, pp. 629-639. doi: 10.1016/j.compositesb.2006.06.021
54. Karabinis, A., and Rousakis, T., “Concrete Confined by FRP Material: A Plasticity Approach,” Engineering Structures, V. 24, No. 7, 2002, pp. 923-932. doi: 10.1016/S0141-0296(02)00011-1
55. Wu, Y. F.; Yun, Y.; Wei, Y.; and Zhou, Y., “Effect of Predamage on the Stress-Strain Relationship of Confined Concrete under Monotonic Loading,” Journal of Structural Engineering, ASCE, V. 140, No. 12, 2014, pp. 04014093 doi: 10.1061/(ASCE)ST.1943-541X.0001015
56. Cui, C., and Sheikh, S., “Analytical Model for Circular Normal- and High-Strength Concrete Columns Confined with FRP,” Journal of Composites for Construction, ASCE, V. 14, No. 5, 2010, pp. 562-572. doi: 10.1061/(ASCE)CC.1943-5614.0000115