Mechanical Performance of Concrete with Waste from Oil Industry

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Mechanical Performance of Concrete with Waste from Oil Industry

Author(s): Nancy Torres Castellanos, Janneth Torres Agredo, and Ruby Mejía de Gutiérrez

Publication: Materials Journal

Volume: 113

Issue: 5

Appears on pages(s): 653-659

Keywords: catalyst spent; mechanical strengths; metakaolin; ultrasonic pulse velocity

DOI: 10.14359/51689110

Date: 9/1/2016

Abstract:
In this paper, the mechanical properties of concrete with an added residue of the petrochemical industry (at levels of 10, 20, 30%), called catalytic cracking catalyst residue (FCC), are evaluated. The mechanical properties evaluated include compressive strength, modulus of elasticity, flexural strength, and ultrasonic pulse velocity. Two reference materials, portland cement concrete without addition and added with 20% of metakaolin (MK), were used. These tests were performed up to 360 days of curing age. Based on the results obtained, correlations were established between the different properties evaluated. The best mechanical performance was obtained with 10% FCC as a cement replacement.

Related References:

1. Gartner, E., “Industrially Interesting Approaches to Low CO2 Cements,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1489-1498. doi: 10.1016/j.cemconres.2004.01.021

2. Hendriks, C. A.; Worrell, E.; de Jager, D.; Blok, K.; and Riemer, P., “Emission Reduction of Greenhouse Gases from the Cement Industry,” Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, IEA GHG R&D Programme, Interlaken, Austria, 1998.

3. Marafi, M., and Stanislaus, A., “Spent Catalyst Waste Management: A Review: Part I—Developments in Hydroprocessing Catalyst Waste Reduction and Use,” Resources, Conservation and Recycling, V. 52, No. 6, 2008, pp. 859-873. doi: 10.1016/j.resconrec.2008.02.004

4. Pacewska, B.; Wilińska, I.; Bukowska, M.; and Nocuń-Wczelik, W., “Effect of Waste Aluminosilicate Material on Cement Hydration and Properties of Cement Mortars,” Cement and Concrete Research, V. 32, No. 11, 2002, pp. 1823-1830. doi: 10.1016/S0008-8846(02)00873-6

5. Pacewska, B.; Wilińska, I.; Bukowska, M.; Blonkowski, G.; and Nocuń-Wczelik, W., “An Attempt to Improve the Pozzolanic Activity of Waste Aluminosilicate Catalyst,” Thermal Analysis and Calorimetry, V. 77, No. 1, 2004, pp. 133-142. doi: 10.1023/B:JTAN.0000033196.30760.af

6. Antiohos, S. K.; Chouliara, E.; and Tsimas, S., “Re-Use of Spent Catalyst from Oil-Cracking Refineries as Supplementary Cementing Material,” Journal China Particuology, V. 4, No. 2, 2006, pp. 73-76. doi: 10.1016/S1672-2515(07)60238-3

7. Payá, J.; Monzó, J.; and Borrachero, M., “Fluid Catalytic Cracking Catalyst Residue (FC3R): An Excellent Mineral By-Product for Improving Early Strength Development of Cement Mixtures,” Cement and Concrete Research, V. 29, No. 11, 1999, pp. 1773-1779. doi: 10.1016/S0008-8846(99)00164-7

8. Payá, J.; Monzó, J.; and Borrachero, M., “Physical, Chemical and Mechanical Properties of Fluid Catalytic Cracking Catalyst Residue (FC3R) Blended Cements,” Cement and Concrete Research, V. 31, No. 1, 2001, pp. 57-61. doi: 10.1016/S0008-8846(00)00432-4

9. Payá, J.; Monzó, J.; Borrachero, M. V.; and Velázquez, S., “Evaluation of the Pozzolanic Activity of Fluid Catalytic Cracking Catalyst Residue (FC3R). Thermogravimetric Analysis Studies on FC3R-Portland Cement Pastes,” Cement and Concrete Research, V. 33, No. 4, 2003, pp. 603-609. doi: 10.1016/S0008-8846(02)01026-8

10. Trochez, J.; Torres, J.; and Mejía de Gutiérrez, R., “Estudio de la Hidratación de Pastas de Cemento Adicionadas con Catalizador de Craqueo Catalítico Usado (FCC) de una Refinería Colombiana,” Revista Facultad de Ingeniería Universidad de Antioquia, V. 55, 2010, pp. 26-34.

11. Izquierdo, S.; Díaz, J.; Mejía, R.; and Torres, J., “Cemento Adicionado con un Residuo del Proceso de Craqueo Catalítico (FCC): Hidratación y Microestructura,” Revista Ingeniería de Construcción RIC, V. 28, No. 2, 2013, pp. 141-154. doi: 10.4067/S0718-50732013000200003

12. Su, N.; Fang, H.; Chen, Z.; and Liu, F., “Reuse of Waste Catalysts from Petrochemical Industries for Cement Substitution,” Cement and Concrete Research, V. 30, No. 11, 2000, pp. 1773-1783. doi: 10.1016/S0008-8846(00)00401-4

13. Su, N.; Chen, Z.; and Fang, H., “Reuse of Spent Catalyst as Fine Aggregate in Cement Mortar,” Cement and Concrete Composites, V. 23, No. 1, 2001, pp. 111-118. doi: 10.1016/S0958-9465(00)00074-3

14. Borrachero, M. V.; Monzó, J.; Payá, J.; Peris-Mora, E.; Vunda, C.; Velázquez, S.; and Soriano, L., “El Catalizador Gastado de Craqueo Catalítico Adicionado al Cemento Portland: Las Primeras 48 Horas de Curado y la Evolución de la Resistencia Mecánica,” VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia, Spain, 2002, pp. 579-589.

15. Pacewska, B.; Bukowska, M.; Wilińska, I.; and Swat, M., “Modification of Properties of Concrete by a New Pozzolan. A Waste Catalyst from the Catalytic Process in a Fluidized Bed,” Cement and Concrete Research, V. 32, No. 1, 2002, pp. 145-152. doi: 10.1016/S0008-8846(01)00646-9

16. Neves, R.; Vicente, C.; Castela, A.; and Montemor, M. F., “Durability Performance of Concrete Incorporating Spent Fluid Cracking Catalyst,” Cement and Concrete Composites, V. 55, 2015, pp. 308-314. doi: 10.1016/j.cemconcomp.2014.09.018

17. Torres Castellanos, N.; Izquierdo García, S.; Torres Agredo, J.; and Mejía de Gutiérrez, R., “Resistance of Blended Concrete Containing an Industrial Petrochemical Residue to Chloride Ion Penetration and Carbonation,” Ingeniería e Investigación, V. 34, No. 1, 2014, pp. 11-16. doi: 10.15446/ing.investig.v34n1.38730

18. Torres, N.; Torres, J.; and Mejía de Gutiérrez, R., “Performance under Sulfate Attack of Concrete Additioned with Fluid Catalytic Cracking Catalyst Residue (FCC) and Metakaolin (MK),” Ingeniería e Investigación, V. 33, No. 1, 2013, pp. 18-22.

19. ASTM C618-12a, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2012, 12 pp.

20. Torres, J.; Mejía de Gutiérrez, R.; Castelló., R.; and Vizcayno, C., “Procesos de Hidratación de Pastas OPC Adicionadas con Caolín Tratado Térmicamente,” Revista Facultad de Ingeniería Universidad de Antioquia, V. 43, 2008, pp. 77-85.

21. NSR-10, “Colombian Earthquake Resistant Building Code,” Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá, Colombia, 2010, 130 pp. (in Spanish)

22. ASTM C469-94, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” ASTM International, West Conshohocken, PA, 1994, 4 pp.

23. ASTM C39/C39M-99, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 1999, 5 pp.

24. ASTM C78/C78M-02, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading),”ASTM International, West Conshohocken, PA, 2002, 4 pp.

25. ASTM C597-09, “Standard Test Method for Pulse Velocity Through Concrete,”ASTM International, West Conshohocken, PA, 2009, 4 pp.

26. Soriano, M. L., “Nuevas Aportaciones en el Desarrollo de Materiales Cementantes con Residuo de Catalizador de Craqueo Catalítico (FCC),” PhD thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2008.

27. Nassif, H.; Najm, H.; and Suksawang, N., “Effect of Pozzolanic Materials and Curing Methods on the Elastic Modulus of HPC,” Cement and Concrete Composites, V. 27, No. 6, 2005, pp. 661-670. doi: 10.1016/j.cemconcomp.2004.12.005

28. Qian, X., and Li, Z., “The Relationships between Stress and Strain for High-Performance Concrete with Metakaolin,” Cement and Concrete Research, V. 31, No. 11, 2001, pp. 1607-1611. doi: 10.1016/S0008-8846(01)00612-3

29. Mehta, K., and Monteiro, P., Concrete, Microstructure, Properties, and Materials, McGraw-Hill, New York, 2006, 647 pp.

30. Popovics, S.; Rose, J. L.; and Popovics, J. S., “The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Research, V. 20, No. 2, 1990, pp. 259-270. doi: 10.1016/0008-8846(90)90079-D

31. Popovics, S., Strength and Related Properties of Concrete: A Quantitative Approach, John Wiley & Sons, Inc., New York, 1998.

32. Yang, H.; Lin, Y.; Hsiao, C.; and Liu, J.-Y., “Evaluating Residual Compressive Strength of Concrete at Elevated Temperatures Using Ultrasonic Pulse Velocity,” Fire Safety Journal, V. 44, No. 1, 2009, pp. 121-130. doi: 10.1016/j.firesaf.2008.05.003

33. Shariq, M.; Prasad, J.; and Masood, A., “Studies in Ultrasonic Pulse Velocity of Concrete Containing GGBFS,” Construction and Building Materials, V. 40, 2013, pp. 944-950. doi: 10.1016/j.conbuildmat.2012.11.070

34. Parande, A. K.; Babu, B. R.; Karthik, M. A.; Kumaar, K. K. D.; and Palaniswamy, N., “Study on Strength and Corrosion Performance for Steel Embedded in Metakaolin Blended Concrete/Mortar,” Construction and Building Materials, V. 22, No. 3, 2008, pp. 127-134. doi: 10.1016/j.conbuildmat.2006.10.003

35. Trtnik, G.; Kavcic, F.; and Turk, G., “Prediction of Concrete Strength Using Ultrasonic Pulse Velocity and Artificial Neural Networks,” Ultrasonics, V. 49, No. 1, 2009, pp. 53-60. doi: 10.1016/j.ultras.2008.05.001

36. Malhotra, V., “Nondestructive Methods for Testing Concrete,” Department of Energy, Mines and Resources, Ottawa, ON, Canada, 1985, pp. 7-110.

37. Madandoust, R., and Mousavi, S. Y., “Fresh and Hardened Properties of Self-Compacting Concrete Containing Metakaolin,” Construction and Building Materials, V. 35, 2012, pp. 752-760. doi: 10.1016/j.conbuildmat.2012.04.109

38. Abdel-Jawad, Y. A., and Afaneh, M., “Factors Affecting the Relationship between Ultrasonic Pulse Velocity and Concrete Compressive Strength,” Indian Concrete Journal, V. 71, No. 7, 1997, pp. 373-376.

39. Hamid, R.; Yusof, K. M.; and Zain, M. F. M., “A Combined Ultrasound Method Applied to High Performance Concrete with Silica Fume,” Construction and Building Materials, V. 24, No. 1, 2010, pp. 94-98. doi: 10.1016/j.conbuildmat.2009.08.012

40. Breysse, D., “Nondestructive Evaluation of Concrete Strength: An Historical Review and a New Perspective by Combining NDT Methods,” Construction and Building Materials, V. 33, 2012, pp. 139-163. doi: 10.1016/j.conbuildmat.2011.12.103

41. Kou, S.-C.; Poon, C.-S.; and Agrela, F., “Comparisons of Natural and Recycled Aggregate Concretes Prepared with the Addition of Different Mineral Admixtures,” Cement and Concrete Composites, V. 33, No. 8, 2011, pp. 788-795. doi: 10.1016/j.cemconcomp.2011.05.009


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer