Title:
Measured Transfer Lengths of 0.7 in. (17.8 mm) Strands for Pretensioned Beams
Author(s):
Canh N. Dang, Royce W. Floyd, W. Micah Hale, and J. R. Martí-Vargas
Publication:
Structural Journal
Volume:
113
Issue:
1
Appears on pages(s):
85-94
Keywords:
0.7 in. (17.8 mm) strand; end-slip; prestressing strand; pretensioned concrete; transfer length
DOI:
10.14359/51687941
Date:
1/1/2016
Abstract:
The use of 0.7 in. (17.8 mm), Grade 270 (1860) prestressing strands has advantages over 0.5 and 0.6 in. (12.7 and 15.22 mm)
strands. This study provides design guidelines for estimating transfer length of 0.7 in. (17.8 mm) strands. Sixteen pretensioned concrete beams using a single prestressing strand were fabricated with conventional concrete and self-consolidating concrete. The concrete strengths at 1 day ranged from 5.9 to 9.2 ksi (40.7 to 63.4 MPa). Transfer lengths were determined using concrete surface strains along with the Average Maximum Strain Method. Initial strand end slips were also measured for predicting transfer length at release using an empirical formula. Experimental results indicated ACI 318 and AASHTO specifications are applicable for estimating transfer length of 0.7 in. (17.8 mm) strands at release and at 28 days. The results also showed that a coefficient of 2.32 was the most appropriate value for estimating transfer lengths at release from initial strand end slips.
Related References:
1. Morcous, G.; Hanna, K.; and Tadros, M. K., “Transfer and Development Length of 0.7-in. (17.8-mm) Diameter Strands in Pretensioned Concrete Bridge Girders,” HPC Bridge Views, V. 64, 2010, pp. 7-9.
2. Lane, S. N., “A New Development Length Equation for Pretensioned Strands in Bridge Beams and Piles,” FHWA-RD-98-116, Federal Highway Administration, Washington, DC, 1998, 123 pp.
3. Morcous, G.; Hanna, K.; and Tadros, M. K., “Impact of 0.7 Inch Diameter Strands on NU I-Girders,” SPR-1(08) P311, Nebraska Department of Roads and University of Nebraska-Lincoln, Lincoln, NE, 2011, 194 pp.
4. Morcous, G.; Asaad, S.; and Hatami, A., “Implementation of 0.7 in. Diameter Strands in Prestressed Concrete Girders,” SPR-P1(13) M333, Nebraska Department of Roads, Lincoln, NE, 2013, 32 pp.
5. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.
6. AASHTO, “LRFD Specifications for Highway Bridges,” American Association of State Highway and Transportation Officials, Washington, DC, 2012, 1938 pp.
7. Morcous, G.; Hatami, A.; Maguire, M.; Hanna, K.; and Tadros, M., “Mechanical and Bond Properties of 18-mm- (0.7-in.-) Diameter Prestressing Strands,” Journal of Materials in Civil Engineering, ASCE, V. 24, No. 6, 2012, pp. 735-744. doi: 10.1061/(ASCE)MT.1943-5533.0000424
8. Dang, C. N.; Murray, C. D.; Floyd, R. W.; Micah Hale, W.; and Martí-Vargas, J. R., “Analysis of Bond Stress Distribution for Prestressing Strand by Standard Test for Strand Bond,” Engineering Structures, V. 72, 2014, pp. 152-159. doi: 10.1016/j.engstruct.2014.04.040
9. Hatami, A.; Morcous, G.; Hanna, K. E.; and Tadros, M. K., “Evaluating the Bond of 0.7-in. Diameter Prestressing Strands for Concrete Bridge Girders,” Transportation Research Board No. 11-2104, 2011, pp. 1-13.
10. Vadivelu, J., “Impact of Larger Diameter Strands on AASHTO/PCI Bulb-Tees,” master’s thesis, University of Tennessee, Knoxville, TN, 2009, 114 pp.
11. Maguire, M.; Morcous, G.; and Tadros, M., “Structural Performance of Precast/Prestressed Bridge Double-Tee Girders Made of High-Strength Concrete, Welded Wire Reinforcement, and 18-mm-Diameter Strands,” Journal of Bridge Engineering, ASCE, V. 18, No. 10, 2013, pp. 1053-1061. doi: 10.1061/(ASCE)BE.1943-5592.0000458
12. Morcous, G.; Assad, S.; Hatami, A.; and Tadros, M. K., “Implementation of 0.7 in. Diameter Strands at 2.0 x 2.0 in. Spacing in Pretensioned Bridge Girders,” PCI Journal, V. 59, No. 3, 2014, pp. 145-158. doi: 10.15554/pcij.06012014.145.158
13. Arab, A. A., “Finite Element Modeling of Pretensioned Concrete Girders: A Methodological Approach with Applications in Large Strands and End Zone Cracking,” PhD thesis, George Washington University, Washington, DC, 2012, 596 pp.
14. Patzlaff, Q.; Morcous, G.; Hanna, K.; and Tadros, M., “Bottom Flange Confinement Reinforcement in Precast Prestressed Concrete Bridge Girders,” Journal of Bridge Engineering, ASCE, V. 17, No. 4, 2012, pp. 607-616. doi: 10.1061/(ASCE)BE.1943-5592.0000287
15. Morcous, G.; Hanna, K.; and Tadros, M. K., “Use of 0.7-in.-Diameter Strands in Pretensioned Bridge Girders,” PCI Journal, V. 56, No. 4, 2011, pp. 65-82. doi: 10.15554/pcij.09012011.65.82
16. Song, W.; Ma, Z. J.; Vadivelu, J.; and Burdette, E. G., “Transfer Length and Splitting Force Calculation for Pretensioned Concrete Girders with High-Capacity Strands,” Journal of Bridge Engineering, ASCE, V. 19, No. 7, 2013, pp. 1-8.
17. Akhnoukh, A. K., “Development of High Performance Precast/Prestressed Bridge Girders,” PhD thesis, University of Nebraska–Lincoln, Lincoln, NE, 2008, 166 pp.
18. Russell, B. W., and Burns, N. H., “Design Guidelines for Transfer, Development and Debonding of Large Diameter Seven Wire Strands in Pretensioned Concrete Girders,” FHWA/TX-93+1210-5F, Austin, TX, 1993, 464 pp.
19. Mitchell, D.; Cook, W. D.; Khan, A. A.; and Tham, T., “Influence of High Strength Concrete on Transfer and Development Length of Pretensioning Strand,” PCI Journal, V. 38, No. 3, 1993, pp. 52-66. doi: 10.15554/pcij.05011993.52.66
20. Russell, B. W., and Burns, N., “Measurement of Transfer Lengths on Pretensioned Concrete Elements,” Journal of Structural Engineering, ASCE, V. 123, No. 5, 1997, pp. 541-549. doi: 10.1061/(ASCE)0733-9445(1997)123:5(541)
21. Hanson, N. W., and Kaar, P. H., “Flexural Bond Tests of Pretensioned Prestressed Beams,” ACI Journal Proceedings, V. 55, No. 1, Jan. 1959, pp. 783-802.
22. Martí-Vargas, J. R.; Arbelaez, C. A.; Serna-Ros, P.; Fernandez-Prada, M. A.; and Miguel-Sosa, P. F., “Transfer and Development Lengths of Concentrically Prestressed Concrete,” PCI Journal, V. 51, No. 5, 2006, pp. 74-85. doi: 10.15554/pcij.09012006.74.85
23. Gross, S. P., and Burns, N. H., “Transfer and Development Length of 15.2 mm (0.6 in.) Diameter Prestressing Strand in High Performance Concrete: Results of the Hoblitzell-Buckner Beam Tests,” FHWA/TX-97/580-2, Texas, 1995, 106 pp.
24. Russell, B. W., and Burns, N. H., “Measured Transfer Lengths of 0.5 and 0.6 in. Strands in Pretensioned Concrete,” PCI Journal, V. 41, No. 5, 1996, pp. 44-65. doi: 10.15554/pcij.09011996.44.65
25. Cousins, T. E.; Johnsone, D. W.; and Zia, P., “Transfer Length of Epoxy-Coated Prestressing Strand,” ACI Materials Journal, V. 87, No. 3, May-June 1990, pp. 193-203.
26. Staton, B. W.; Do, N. H.; Ruiz, E. D.; and Hale, W. M., “Transfer Lengths of Prestressed Beams Cast with Self-Consolidating Concrete,” PCI Journal, V. 54, No. 2, 2009, pp. 64-83. doi: 10.15554/pcij.03012009.64.83
27. Kim, Y. H.; Trejo, D.; and Hueste, M. B. D., “Bond Performance in Self-Consolidating Concrete Pretensioned Bridge Girders,” ACI Structural Journal, V. 109, No. 6, Nov.-Dec. 2012, pp. 755-765.
28. Hossain, K. M. A., and Lachemi, M., “Bond Behavior of Self-Consolidating Concrete with Mineral and Chemical Admixtures,” Journal of Materials in Civil Engineering, ASCE, V. 20, No. 9, 2008, pp. 608-616. doi: 10.1061/(ASCE)0899-1561(2008)20:9(608)
29. Pozolo, A., and Andrawes, B., “Analytical Prediction of Transfer Length in Prestressed Self-Consolidating Concrete Girders Using Pull-out Test Results,” Construction and Building Materials, V. 25, No. 2, 2011, pp. 1026-1036. doi: 10.1016/j.conbuildmat.2010.06.076
30. Trejo, D.; Hueste, M. B. D.; Kim, Y. H.; and Atahan, H., “Characterization of Self-Consolidating Concrete for Design of Precast, Prestressed Bridge Girders,” FHWA/TX-09/0-5134-2, Washington, DC, 2008, 384 pp.
31. Myers, J. J.; Volz, J. S.; Sells, E.; Porterfield, K.; Looney, T.; Tucker, B.; and Holman, K., “Report B: Self-Consolidating concrete (SCC) for Infrastructure Elements: Bond, Transfer Length, and Development Length of Prestressing Strand in SCC,” CMR 13-003, Missouri S&T, Rolla, MO, 2012, 264 pp.
32. Martí-Vargas, J.; Serna-Ros, P.; Arbeláez, C.; and Rigueira-Victor, J., “Transfer and Anchorage Bond Behaviour in Self-Compacting Concrete,” Materiales de Construcción, V. 56, No. 284, 2006, pp. 27-42.
33. Girgis, A. F. M., and Tuan, C. Y., “Bond Strength and Transfer Length of Pre-tensioned Bridge Girders Cast with Self-Consolidating Concrete,” PCI Journal, V. 50, No. 6, 2005, pp. 72-87. doi: 10.15554/pcij.11012005.72.87
34. Boehm, K. M.; Barnes, R. W.; and Schindler, A. K., “Performance of Self-Consolidating Concrete in Prestressed Girders,” FHWA/ALDOT 930-602, Alabama, 2010, 197 pp.
35. Khayat, K., and Mitchell, D., “Self-Consolidating Concrete for Precast, Prestressed Concrete Bridge Elements,” NCHRP-628, Washington, DC, 2009, 99 pp.
36. ASTM C1611, “Standard Test Method for Slump Flow of Self-Consolidating Concrete,” ASTM International, West Conshohocken, PA, 2014, 6 pp.
37. ASTM C1621, “Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring,” ASTM International, West Conshohocken, PA, 2014, 5 pp.
38. Kahn, L. F.; Dill, J. C.; and Reutlinger, C. G., “Transfer and Development Length of 15-mm Strand in High Performance Concrete Girders,” Journal of Structural Engineering, ASCE, V. 128, No. 7, 2002, pp. 913-921. doi: 10.1061/(ASCE)0733-9445(2002)128:7(913)
39. Floyd, R. W.; Howland, M. B.; and Micah Hale, W., “Evaluation of Strand Bond Equations for Prestressed Members Cast with Self-Consolidating Concrete,” Engineering Structures, V. 33, No. 10, 2011, pp. 2879-2887. doi: 10.1016/j.engstruct.2011.06.012
40. Dang, C. N.; Murray, C. D.; Floyd, R. W.; Hale, W. M.; and Mart��-Vargas, J. R., “A Correlation of Strand Surface Quality to Transfer Length,” ACI Structural Journal, V. 111, No. 5, Sept.-Oct. 2014, pp. 1245-1252. doi: 10.14359/51686925
41. Maguire, M., “Impact of 0.7 Inch Diameter Prestressing Strands in Bridge Girders,” master’s thesis, University of Nebraska–Lincoln, Lincoln, NE, 2009, 312 pp.
42. Patzlaff, Q., “Impact of Bottom Flange Confinement Reinforcement on Performance of Prestressed Concrete Bridge Girders,” master’s thesis, University of Nebraska–Lincoln, Lincoln, NE, 2010, 127 pp.
43. Ramirez, J. A., and Russell, B. W., “Transfer, Development, and Splice Length for Strand/Reinforcement in High Strength Concrete,” NCHRP 603, Washington, DC, 2008, 122 pp.
44. Martí-Vargas, J. R.; Serna-Ros, P.; Navarro-Gregori, J.; and Bonet, J. L., “Effects of Concrete Composition on Transmission Length of Prestressing Strands,” Construction and Building Materials, V. 27, No. 1, 2012, pp. 350-356. doi: 10.1016/j.conbuildmat.2011.07.038
45. Martí-Vargas, J. R.; Arbelaez, C. A.; Serna-Ros, P.; Navarro-Gregori, J.; and Pallares-Rubio, L., “Analytical Model for Transfer Length Prediction of 13 mm Prestressing Strand,” Structural Engineering & Mechanics, V. 26, No. 2, 2007, pp. 211-229. doi: 10.12989/sem.2007.26.2.211
46. Barnes, R. W.; Grove, J. W.; and Burns, N. H., “Experimental Assessment of Factors Affecting Transfer Length,” ACI Structural Journal, V. 100, No. 6, Nov.-Dec. 2003, pp. 740-748.
47. Rose, D., and Russell, B., “Investigation of Standardized Tests to Measure the Bond Performance of Prestressing Strand,” PCI Journal, V. 42, No. 4, 1997, pp. 56-80. doi: 10.15554/pcij.07011997.56.80
48. Unay, I. O.; Russell, B.; Burns, N.; and Kreger, M., “Measurement of Transfer Length on Prestressing Strands in Prestressed Concrete Specimens,” 1210-1, Austin, TX, 1991, 135 pp.
49. Park, H., and Cho, J., “Bond-Slip-Strain Relationship in Transfer Zone of Pretensioned Concrete Elements,” ACI Structural Journal, V. 111, No. 3, May-June 2014, pp. 503-514. doi: 10.14359/51686567
50. Martí-Vargas, J. R.; Arbelaez, C. A.; Serna-Ros, P.; and Castro-Bugallo, C., “Reliability of Transfer Length Estimation from Strand End Slip,” ACI Structural Journal, V. 104, No. 4, July-Aug. 2007, pp. 487-494.