Durability of Alkali-Activated Slag Concretes Prepared Using Waste Glass as Alternative Activator

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Durability of Alkali-Activated Slag Concretes Prepared Using Waste Glass as Alternative Activator

Author(s): Manuel Torres-Carrasco, Monique T. Tognonvi, Arezki Tagnit-Hamou, and Francisca Puertas

Publication: Materials Journal

Volume: 112

Issue: 6

Appears on pages(s): 791-800

Keywords: alkali-activated slag; alternative alkaline activators; durability; waste glass

DOI: 10.14359/51687903

Date: 11/1/2015

Abstract:
Concrete is by far the most used building material in the world, but is facing a large environmental challenge due to its cement content. The production of portland cement is responsible for 5 to 8% of worldwide CO2 emissions. Waste and supplementary cementing materials (SCMs) such as blast-furnace slag can be used as partial or total substitute for portland cement to avoid or to reduce this negative effect. This work explores the study of durability and the mechanical behavior of concretes using urban and industrial waste glasses as a potential alkaline activator for slag (AAS). The development of strengths and microstructure in the concretes activated with waste glass were also comparable to the parameters observed in AAS concretes prepared with conventional activators. Durability tests, including chloride penetration resistance, freezingand-thawing resistance, carbonation, resistivity, and porosity, were conducted and the effect of the different parameters such as the activator type is discussed.

Related References:

1. Malhotra, V. M., “Role of Supplementary Cementing Materials in Reducing Greenhouse Gas Emissions,” Concrete Technology for a Sustianable Development in the 21st Century, London, 2000, pp. 226-235.

2. Mejía, J. M.; Mejía de Gutiérrez, R.; and Puertas, F., “Rice Husk Ash as a Source of Silica in Alkali-Activated Fly Ash and Granulated Blast Furnace Slag Systems,” Materiales de Construcción, V. 63, No. 311, 2013, pp. 361-375.

3. Mather, B., “Laboratory Tests of Portland Blast-Furnace Slag Cements,” ACI Journal Proceedings, V. 54, 1957, pp. 205-232.

4. Puertas, F., “Escorias de alto Horno: Composición y Comportamiento Hidráulico,” Materiales de Construcción, V. 43, No. 229, 1993, pp. 37-48. doi: 10.3989/mc.1993.v43.i229.687

5. Glukhovsky, V.; Rostovskaja, G.; and Rumyna, G., “High Strength Slag-Alkaline Cements,” Seventh International Congress on the Chemistry of Cement, Paris, 1980, pp. 164-168.

6. Glukhovsky, V.; Zaitsev, Y.; and Pakhomow, V., “Slag-Alkaline Cements and Concretes: Structures, Properties, Technological and Economic Aspects of Use,” Silicates Industries, V. 48, 1983, pp. 197-200.

7. U.S. Environmental Protection Agency, Washington, DC, www.epa.gov.

8. Shi, C., and Zheng, K., “A Review on the Use of Waste Glasses in the Production of Cement and Concrete,” Resources, Conservation and Recycling, V. 52, No. 2, 2007, pp. 234-247. doi: 10.1016/j.resconrec.2007.01.013

9. Chen, G.; Lee, H.; Young, K. L.; Yue, P. L.; Wong, A.; Tao, T.; and Choi, K. K., “Glass Recycling in Cement Production—An Innovative Approach,” Waste Management (New York, N.Y.), V. 22, No. 7, 2002, pp. 747-753. doi: 10.1016/S0956-053X(02)00047-8

10. Ecovidrio, Madrid, Spain, www.ecovidrio.es.

11. Torres-Carrasco, M.; Palomo, J. G.; and Puertas, F., “Sodium Silicate Solutions from Dissolution of Glass Wastes: Statistical Analysis,” Materiales de Construcción, V. 64, No. 314, 2014, doi: http://dx.doi.org/10.3989/mc.2014.05213

12. Torres-Carrasco, M.; Puertas, F.; and Blanco-Varela, M., “Preparación de Cementos Alcalinos a Partir de Residuos Vitreos. Solubilidad de Residuos Vítreos en Medios Fuertemente Básicos,” XII Congreso Nacional de Materiales (Alicante), V. 35, 2012, 113 pp.

13. Puertas, F.; Torres-Carrasco, M.; Varga, C.; Torres, J.; Moreno, E.; and Palomo, J. G., “Re-use of Urban and Industrial Glass Waste to Prepare Alkaline Cements,” Fourth International Conference on Engineering for Waste and Biomass Valorization, V. 52, Oporto, Portugal, 2012, 65 pp.

14. Brykov, A. S., and Korneev, V. I., “Production and Usage of Powdered Alkali Metal Silicate Hydrates,” Metallurgist, V. 52, No. 11-12, Nov. 2008, pp. 648-652. doi: 10.1007/s11015-009-9108-5

15. Puertas, F.; Torres, J. J.; Torres-Carrasco, M.; and Varga, C., “PCT/ES2012/070408,” Procedimiento para la Fabricación de Cementos Alcalinos a Partir de Residuos Vítreos Urbanos e Industriales, V. 5, 2012, pp. 6309-6315.

16. Johansen, V.; Thaulow, N.; and Skalny, J., “Chemical Degradation of Concrete,” presentation at the 1995 TRB Meeting, Washington, DC, V. 35, 1995.

17. Fernández-Jiménez, A.; García-Lodeiro, I.; and Palomo, A., “Durability of Alkali-Activated Fly Ash Cementitious Materials,” Journal of Materials Science, V. 42, No. 9, 2007, pp. 3055-3065. doi: 10.1007/s10853-006-0584-8

18. Puertas, F., and Torres-Carrasco, M., “Use of Glass Waste as an Activator in the Preparation of Alkali-Activated Slag. Mechanical Strength and Paste Characterisation,” Cement and Concrete Research, V. 57, 2014, pp. 95-104. doi: 10.1016/j.cemconres.2013.12.005

19. Bernal, S. A.; Mejía de Gutiérrez, R.; Pedraza, A. L.; Provis, J. L.; Rodriguez, E. D.; and Delvasto, S., “Effect of Binder Content on the Performance of Alkali-Activated Slag Concretes,” Cement and Concrete Research, V. 41, No. 1, 2011, pp. 1-8. doi: 10.1016/j.cemconres.2010.08.017

20. Palacios, M.; Banfill, P.; and Puertas, F., “Rheology and Setting Behavior of Alkali-Activated Cement Pastes and Mortars: Effect of Organic Admixture,” ACI Materials Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 140-148.

21. Palacios, M., and Puertas, F., “Effectiveness of Mixing Time on Hardened Properties of Waterglass-Activated Slag Pastes and Mortars,” ACI Materials Journal, V. 108, No. 1, Jan.-Feb. 2011, pp. 73-78.

22. Cavalier, P. G., and Vassie, P. R., “Investigation and Repair of Reinforced Corrosion in a Bridge Deck,” Proceedings—Institution of Civil Engineers, V. 70, No. 3, 1981, pp. 461-480. doi: 10.1680/iicep.1981.1784

23. ASTM C666/C666M-03, “Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing,” ASTM International, West Conshohocken, PA, 2003, 7 pp.

24. Palacios, M., and Puertas, F., “Effect of Shrinkage-Reducing Admixtures on the Properties of Alkali-Activated Slag Mortars and Pastes,” Cement and Concrete Research, V. 37, No. 5, 2007, pp. 691-702. doi: 10.1016/j.cemconres.2006.11.021

25. Shi, C., “Effect of Mixing Proportions of Concrete on its Electrical Conductivity and the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277) Results,” Cement and Concrete Research, V. 34, No. 3, 2004, pp. 537-545. doi: 10.1016/j.cemconres.2003.09.007

26. Puertas, F.; Fernández-Jiménez, A.; and Blanco-Varela, M., “Pore Solution in Alkali-Activated Slag Cement Pastes. Relation to the composition and Structure of Calcium Silicate Hydrate,” Cement and Concrete Research, V. 34, No. 1, 2004, pp. 139-148. doi: 10.1016/S0008-8846(03)00254-0

27. Shi, C., “Another Look at the Rapid Chloride Permeability Test (ASTM C1202 or ASSHTO T277),” FHWA Resource Center, V. 34, Baltimore, MD, 2003.

28. Shi, C.; Stegemann, J. A.; and Caldwell, R. J., “Effect of Supplementary Cementing Materials on the Specific Conductivity of Pore Solution and its Implications on the Rapid Chloride Permeability Test (AASHTO T277 and ASTM C1202) Results,” ACI Materials Journal, V. 95, No. 4, July-Aug. 1998, pp. 389-394.

29. Holzer, L.; Figi, R.; Gruskovnjak, A.; Lothenbach, B.; and Winnefeld, F., “Hydration of Alkali-Activated Slag: Comparison with Ordinary Portland Cement,” Advances in Cement Research, V. 18, No. 3, 2006, pp. 119-128. doi: 10.1680/adcr.2006.18.3.119

30. Lloyd, R. R.; Provis, J. L.; and van Deventer, J. S. J., “Pore Solution Composition and Alkali Diffusion in Inorganic Polymer Cement,” Cement and Concrete Research, V. 40, No. 9, 2010, pp. 1386-1392. doi: 10.1016/j.cemconres.2010.04.008

31. Song, S., and Jennings, H. M., “Pore Solution Chemistry of Alkali-Activated Ground Granulated Blast Furnace Slag,” Cement and Concrete Research, V. 29, No. 2, 1999, pp. 159-170. doi: 10.1016/S0008-8846(98)00212-9

32. Douglas, E.; Bilodeau, A.; and Malhotra, V., “Properties and Durability of Alkali-Activated Slag Concrete,” ACI Materials Journal, V. 89, No. 5, Sept.-Oct. 1992, pp. 509-516.

33. Morris, W.; Vico, A.; Vazquez, M.; and de Sanchez, S. R., “Corrosion of Reinforcing Steel Evaluated by Means of Concrete Resistivity Measurements,” Corrosion Science, V. 44, No. 1, 2002, pp. 81-99. doi: 10.1016/S0010-938X(01)00033-6

34. Lomboy, G., and Wang, K., “Effects of Strength, Permeability and Air Void Parameters on Freezing-Thawing Resistance of Concrete with and without Air Entrainment,” Journal of ASTM International, V. 6, 2009, pp. 203-208.

35. Shang, H.-S., and Yi, T. H., “Freeze-Thaw Durability of Air-Entrained Concrete,” The Scientific World Journal, V. 2013, 2013, pp. 1-6. doi: 10.1155/2013/650791

36. Cánovas, M. F., Hormigón, Colegio Ingenieros Caminos, Madrid, Spain, V. 32, 2007, 666 pp.

37. Mehta, P. K., and Monteiro, P. J. M., Concrete: Microstructure, Properties and Materials, third edition, McGraw-Hill, New York, 2006, 659 pp.

38. Neville, A. M., Properties of Concrete, fourth edition, Longman, London, UK, 1995, 864 pp.

39. Calavera, J., “Patología de Estructuras de Hormigón Armado y Pretensado,” INTEMAC, 2007, pp. 57-58.

40. Bernal, S. A.; Provis, J. L.; Brice, D.; Kilcullen, A.; Duxson, P.; and van Deventer, J. S. J., “Accelerated Carbonation Testing of Alkali-Activated Binders Significantly Underestimates Service Life: The Role of Pore Solution Chemistry,” Cement and Concrete Research, V. 42, No. 10, 2012, pp. 1317-1326. doi: 10.1016/j.cemconres.2012.07.002

41. Fernández Bertos, M.; Simons, S. J. R.; Hills, C. D.; and Carey, P. J., “A Review of Accelerated Carbonation Technology in the Treatment of Cement-Based Materials and Sequestration of CO2,” Journal of Hazardous Materials, V. 112, No. 3, 2004, pp. 193-205. doi: 10.1016/j.jhazmat.2004.04.019

42. Palacios, M., and Puertas, F., “Effect of Carbonation on Alkali-Activated Slag Paste,” Journal of the American Ceramic Society, V. 89, No. 10, 2006, pp. 3211-3221. doi: 10.1111/j.1551-2916.2006.01214.x

43. Bernal, S. A.; Provis, J. L.; Mejía de Gutiérrez, R.; and van Deventer, J. S. J., “Accelerated Carbonation Testing of Alkali-Activated Slag/Metakaolin Blended Concretes: Effect of Exposure Conditions,” Materials and Structures, V. 48, No. 3, 2015, pp. 653-669. doi: 10.1617/s11527-014-0289-4

44. Bernal, S. A.; San Nicolas, R.; Myers, R. J.; Mejía de Gutiérrez, R.; Puertas, F.; van Deventer, J. S. J.; and Provis, J. L., “MgO Content of Slag Controls Phase Evolution and Structural Changes Induced by Accelerated Carbonation in Alkali-Activated Binders,” Cement and Concrete Research, V. 57, 2014, pp. 33-43. doi: 10.1016/j.cemconres.2013.12.003

45. Puertas, F., and Palacios, M., “Changes in C-S-H of Alkali-Activated Slag and Cement Pastes after Accelerated Carbonation,” XII International Congress on the Chemistry of Cement, Montreal, QC, Canada, 2007.

46. Bakharev, T.; Sanjayan, J.; and Cheng, Y.-B., “Resistance of Alkali-Activated Slag Concrete to Carbonation,” Cement and Concrete Research, V. 31, No. 9, 2001, pp. 1277-1283. doi: 10.1016/S0008-8846(01)00574-9

47. Law, D. W.; Adam, A. A.; Molyneaux, T. K.; and Patnaikuni, I., “Durability Assessment of Alkali Activated Slag (AAS) Concrete,” Materials and Structures, V. 45, No. 9, 2012, pp. 1425-1437. doi: 10.1617/s11527-012-9842-1


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer