Title:
A Fundamental Assessment of Graphite Nanoplatelet Effects on Progress of Alkali-Silica Reactions
Author(s):
Amirpasha Peyvandi, Daniel Holmes, Parviz Soroushian, and Anagi M. Balachandra
Publication:
Materials Journal
Volume:
112
Issue:
5
Appears on pages(s):
673-680
Keywords:
alkali-silica reaction (ASR); graphite nanoplatelet; 29Si NMR spectroscopy
DOI:
10.14359/51687767
Date:
9/1/2015
Abstract:
Graphite nanoplatelets were used to control alkali-silica reactions in concrete by enhancing the barrier qualities of cementitious binders and providing local reinforcing effects against the damaging expansive phenomena. Nuclear magnetic resonance (NMR) spectroscopy was used to monitor the changes in chemical environment that reflect upon alkali-silica reactivity. Laboratory experiments were conducted to evaluate the effects of graphite nanoplatelets on alkali-silica reactions (ASRs). Reactive flint aggregates were used to induce ASR. The 29Si MAS NMR spectroscopy technique was employed for evaluating the changes in chemical environment by monitoring different silicate tethrahedra (Qn) as a basis to quantify the progress of ASR in concrete materials prepared with and without graphite nanoplatelets. Quantitative evaluations of different Qn species present in anhydrous cement, calcium silicate hydrate (C-S-H), and ASR products indicated that introduction of graphite nanoplatelets lowered the degree of polymerization of silicate tetrahedral in C-S-H. The reduction in the breakdown of the networked structure of silicate tetrahedra under accelerated ASR indicates that graphite nanoplatelets reduce the extent of ASRs.
Related References:
1. Nima, F.; Abang, A. A. A.; and Demirboga, R., “Development of Nanotechnology in High Performance Concrete,” Advanced Materials Research, V. 364, Oct. 2011, pp. 115-118. doi: 10.4028/www.scientific.net/AMR.364.115
2. Mehta, P. K., and Monteiro, J. M., Concrete: Microstructure, Properties, and Materials, third edition, McGraw-Hill, New York, 2005, 659 pp.
3. Raki, L.; Beaudoin, J.; Alizadeh, R.; Makar, J.; and Sato, T., “Cement and Concrete Nanoscience and Nanotechnology,” Materials (Basel), V. 3, No. 2, 2010, pp. 918-942. doi: 10.3390/ma3020918
4. Sanchez, F., and Sobolev, K., “Nanotechnology in Concrete—A Review,” Construction and Building Materials, V. 24, No. 11, 2010, pp. 2060-2071. doi: 10.1016/j.conbuildmat.2010.03.014
5. Sobolev, K., and Ferrada-Gutiérrez, M., “How Nanotechnology Can Change the Concrete World: Part 1,” American Ceramic Society Bulletin, V. 10, 2005, pp. 14-17.
6. Peyvandi, A.; Sbia, L. A.; Soroushian, P.; and Sobolev, K., “Effect of the Cementitious Paste Density on the Performance Efficiency of Carbon Nanofiber in Concrete Nanocomposite,” Construction and Building Materials, V. 48, 2013, pp. 265-269. doi: 10.1016/j.conbuildmat.2013.06.094
7. Bao-Min, W.; Yuan, Z.; and Shuai, L., “Influence of Carbon Nanofibers on the Mechanical Performance and Microstructure of Cement-Based Materials,” Nanoscience and Nanotechnology Letters, V. 5, No. 10, 2013, pp. 112-118.
8. Zhao, Z. Q.; Sun, R. J.; Xin, G. F.; Wei, S. S.; and Huang, D. W., “Review: Application of Nanomaterials in Concrete,” Applied Mechanics and Materials, V. 405-408, Sept. 2013, pp. 2881-2884. doi: 10.4028/www.scientific.net/AMM.405-408.2881
9. Kim, H. K.; Nam, I. W.; and Lee, H. K., “Enhanced Effect of Carbon Nanotube on Mechanical and Electrical Properties of Cement Composites by Incorporation of Silica Fume,” Composite Structures, V. 107, 2014, pp. 60-69. doi: 10.1016/j.compstruct.2013.07.042
10. Kerienė, J.; Kligys, M.; Laukaitis, A.; Yakovlev, G.; Špokauskas, A.; and Aleknevičius, M., “The Influence of Multi-Walled Carbon Nanotubes Additive on Properties of Non-autoclaved and Autoclaved Aerated Concretes,” Construction and Building Materials, V. 49, 2013, pp. 527-535. doi: 10.1016/j.conbuildmat.2013.08.044
11. Peyvandi, A.; Soroushian, P.; and Balachandra, A. M., “Reinforcement Efficiency of Modified Carbon Nanofiber in High-Performance Concrete Nanocompoiste,” Advances in Civil Engineering Materials, V. 3, No. 1, 2014, pp. 540-553. doi: 10.1520/ACEM20140019
12. Abu Al-Rub, R. K.; Tyson, B. M.; Yazdanbakhsh, A.; and Grasley, Z., “Mechanical Properties of Nanocomposite Cement Incorporating Surface-Treated and Untreated Carbon Nanotubes and Carbon Nanofibers,” Journal of Nanomechanics and Micromechanics, V. 2, No. 1, 2012, pp. 1-6. doi: 10.1061/(ASCE)NM.2153-5477.0000041
13. Itaya, T.; Nakazawa, T.; Oshida, K.; and Endo, M., “Dispersion of Carbon Nanofibers in Water,” Carbon, 2004.
14. Nasibulina, L. I.; Anoshkin, L. V.; Nasibulin, A. G.; Cwirzen, A.; Penttala, V.; and Kauppinen, E. I., “Effect of Carbon Nanotube Aqueous Dispersion Quality on Mechanical Properties of Cement Composite,” Journal of Nanomaterials, V. 2012, 2012, pp. 1-6. doi: 10.1155/2012/169262
15. Yazdanbakhsh, A.; Grasley, Z.; Tyson, B.; and Abu Al-Rub, R., “Challenges and Benefits of Utilizing Carbon Nanofilaments in Cementitious Materials,” Journal of Nanomaterials, V. 2012, 2012, pp. 1-8. doi: 10.1155/2012/371927
16. Sbia, L. A.; Peyvandi, A.; Soroushian, P.; Balachandra, A. M.; and Smith, I., “Optimization of Ultra-High-Performance Concrete with Nano- and Micro-Scale Reinforcement,” Cogent Engineering, V. 1, No. 1, 2014.
17. Vaisman, L.; Wagner, H. D.; and Marom, G., “The Role of Surfactants in Dispersion of Carbon Nanotubes,” Advances in Colloid and Interface Science, V. 128-130, 2006, pp. 37-46. doi: 10.1016/j.cis.2006.11.007
18. Zaldivar, R. J.; Nokes, J. P.; Adams, P. M.; Hammoud, K.; and Kim, H. I., “Surface Functionalization without Lattice Degradation of Highly Crystalline Nanoscaled Carbon Materials Using a Carbon Monoxide Atmospheric Plasma Treatment,” Carbon, V. 50, No. 8, 2012, pp. 2966-2975. doi: 10.1016/j.carbon.2012.02.079
19. Sebastián, D.; Suelves, I.; Moliner, R.; and Lázaro, M. J., “The Effect of the Functionalization of Carbon Nanofibers on Their Electronic Conductivity,” Carbon, V. 48, No. 15, 2010, pp. 4421-4431. doi: 10.1016/j.carbon.2010.07.059
20. Collins, F.; Lambert, J.; and Duan, W. H., “The Influences of Admixtures on the Dispersion, Workability, and Strength of Carbon Nanotube-OPC Paste Mixtures,” Cement and Concrete Composites, V. 34, No. 2, 2012, pp. 201-207. doi: 10.1016/j.cemconcomp.2011.09.013
21. Habermehl-Cwirzen, K.; Penttala, V.; and Cwirzen, A., “Surface Decoration of Carbon Nanotubes and Mechanical Properties of Cement/Carbon Nanotube Composites,” Advances in Cement Research, V. 20, No. 2, 2008, pp. 65-73. doi: 10.1680/adcr.2008.20.2.65
22. Liu, Y. X.; Du, Z. J.; Li, Y.; Zhang, C.; and Li, H. Q., “Covalent Functionalization of Multiwalled Carbon Nanotubes with Poly(acrylic Acid),” Chinese Journal of Chemistry, V. 24, No. 4, 2006, pp. 563-568. doi: 10.1002/cjoc.200690107
23. Metaxa, Z. S.; Seo, J. W. T.; Konsta-Gdoutos, M. S.; Hersam, M. C.; and Shah, S. P., “Highly Concentrated Carbon Nanotube Admixture for Nano-Fiber Reinforced Cementitious Materials,” Cement and Concrete Composites, V. 34, No. 5, 2012, pp. 612-617. doi: 10.1016/j.cemconcomp.2012.01.006
24. Yazdanbakhsh, A., and Grasley, Z., “The Theoretical Maximum Achievable Dispersion of Nanoinclusions in Cement Paste,” Cement and Concrete Research, V. 42, No. 6, 2012, pp. 798-804. doi: 10.1016/j.cemconres.2012.03.001
25. Peyvandi, A.; Soroushian, P.; Abdol, N.; and Balachandra, A. M., “Surface-Modified Graphite Nanomaterials for Improved Reinforcement Efficiency in Cementitious Paste,” Carbon, V. 63, 2013, pp. 175-186. doi: 10.1016/j.carbon.2013.06.069
26. Parveen, S.; Rana, S.; and Fangueiro, R., “A Review on Nanomaterial Dispersion, Microstructure, and Mechanical Properties of Carbon Nanotube and Nanofiber Reinforced Cementitious Composites,” Journal of Nanomaterials, V. 2013, 2013, p. 1-9. doi: 10.1155/2013/710175
27. Ahmed Sbia, L.; Peyvandi, A.; Soroushian, P.; Balachandra, A. M.; and Sobolev, K., “Evaluation of Modified-Graphite Nanomaterials in Concrete Nanocomposite Based on Packing Density Principles,” Construction and Building Materials, V. 76, 2015, pp. 413-422. doi: 10.1016/j.conbuildmat.2014.12.019
28. Peyvandi, A., and Soroushian, P., “Structural Performance of Dry-Cast Concrete Nanocomposite Pipes,” Materials and Structures, V. 48, No. 1-2, 2015, pp. 461-470. doi: 10.1617/s11527-013-0196-0
29. Skibsted, J., and Hall, C., “Characterization of Cement Minerals, Cements and Their Reaction Products at the Atomic and Nano Scale,” Cement and Concrete Research, V. 38, No. 2, 2008, pp. 205-225. doi: 10.1016/j.cemconres.2007.09.010
30. Porteneuve, C.; Zanni, H.; Vernet, C.; Kjellsen, K. O.; Korb, J.-P.; and Petit, D., “Nuclear Magnetic Resonance Characterization of High- and Ultrahigh-Performance Concrete: Application to the Study of Water Leaching,” Cement and Concrete Research, V. 31, No. 12, 2001, pp. 1887-1893. doi: 10.1016/S0008-8846(01)00648-2
31. Peyvandi, A.; Holmes, D.; Balachandra, A. M.; and Soroushian, P., “Quantitative Analysis of Chloride Ion Diffusion in Cementitious Materials Using 27Al NMR Spectroscopy,” Journal of Infrastructure Systems, 2013, doi: 10.1061/(ASCE)IS.1943-555X.0000236
32. Peyvandi, A.; Holmes, D.; Soroushian, P.; and Balachandra, A. M., “Monitoring of Sulfate Attack in Concrete by 27Al and 29Si MAS NMR Spectroscopy,” Journal of Materials in Civil Engineering, ASCE, 2013, doi: 10.1061/(ASCE)MT.1943-5533.0001175
33. Ueda, T.; Baba, Y.; and Nanasawa, A., “Penetration of Lithium into ASR-Affected Concrete Due to Electro-Osmosis of Lithium Carbonate Solution,” Construction and Building Materials, V. 39, 2013, pp. 113-118. doi: 10.1016/j.conbuildmat.2012.05.007
34. Gao, X. X.; Multon, S.; Cyr, M.; and Sellier, A., “Alkali-Silica Reaction (ASR) Expansion: Pessimum Effect Versus Scale Effect,” Cement and Concrete Research, V. 44, 2013, pp. 25-33. doi: 10.1016/j.cemconres.2012.10.015
35. Peyvandi, A.; Soroushian, P.; and Nassar, R.-U.-D., “Recycled Glass Concrete,” Concrete International, V. 35, No. 1, Jan. 2013, pp. 29-32.
36. Grattan-Bellew, P. E., and Chan, G., “Comparison of the Morphology of Alkali-Silica Gel Formed in Limestones in Concrete Affected by the So-Called Alkali-Carbonate Reaction (ACR) and Alkali-Silica Reaction (ASR),” Cement and Concrete Research, V. 47, 2013, pp. 51-54. doi: 10.1016/j.cemconres.2013.01.013
37. Lindgård, J.; Sellevold, E. J.; Thomas, M. D. A.; Pedersen, B.; Justnes, H.; and Rønning, T. F., “Alkali-Silica Reaction (ASR)—Performance Testing: Influence of Specimen Pre-treatment, Exposure Conditions and Prism Size on Concrete Porosity, Moisture State and Transport Properties,” Cement and Concrete Research, V. 53, 2013, pp. 145-167. doi: 10.1016/j.cemconres.2013.05.020
38. Beyene, M.; Snyder, A.; Lee, R. J.; and Blaszkiewicz, M., “Alkali Silica Reaction (ASR) as a Root Cause of Distress in a Concrete Made from Alkali Carbonate Reaction (ACR) Potentially Susceptible Aggregates,” Cement and Concrete Research, V. 51, 2013, pp. 85-95. doi: 10.1016/j.cemconres.2013.04.014
39. Bulteel, D.; Garcia-Diaz, E.; Vernet, C.; and Zanni, H., “Alkali-Silica Reaction—A Method to Quantify the Reaction Degree,” Cement and Concrete Research, V. 32, No. 8, 2002, pp. 1199-1206. doi: 10.1016/S0008-8846(02)00759-7
40. Chen, G.; Wu, D.; Weng, W.; and Wu, C., “Exfoliation of Graphite Flake and Its Nanocomposites,” Carbon, V. 41, No. 3, 2003, pp. 619-621. doi: 10.1016/S0008-6223(02)00409-8
41. Celzard, A.; Marêché, J. F.; and Furdin, G., “Modelling of Exfoliated Graphite,” Progress in Materials Science, V. 50, No. 1, 2005, pp. 93-179. doi: 10.1016/j.pmatsci.2004.01.001
42. Drzal, L. T.; Rich, M. J.; Koenig, M. F.; and Lloyd, P. F., “Adhesion of Graphite Fibers to Epoxy Matrices: II. The Effect of Fiber Finish,” The Journal of Adhesion, V. 16, No. 2, 1983, pp. 133-152. doi: 10.1080/00218468308074911
43. Peyvandi, A.; Soroushian, P.; Balachandra, A. M.; and Sobolev, K., “Enhancement of the Durability Characteristics of Concrete Nanocomposite Pipes with Modified Graphite Nanoplatelets,” Construction and Building Materials, V. 47, 2013, pp. 111-117. doi: 10.1016/j.conbuildmat.2013.05.002
44. Saccani, A.; Bonora, V.; and Monari, P., “Laboratory Short-Term Evaluation of ASR: A Contribution,” Cement and Concrete Research, V. 31, No. 5, 2001, pp. 739-742. doi: 10.1016/S0008-8846(01)00477-X
45. Tambelli, C. E.; Schneider, J. F.; Hasparyk, N. P.; and Monteiro, J. P. M., “Study of the Structure of Alkali-Silica Reaction Gel by High-Resolution NMR Spectroscopy,” Journal of Non-Crystalline Solids, V. 352, No. 32-35, Sept. 2006, pp. 3429-3436.
46. Khouchaf, L., and Verstraete, J., “Multi-Technique and Multi-Scale Approach Applied to Study the Structural Behavior of Heterogeneous Materials: Natural SiO2 Case,” Journal of Materials Science, V. 42, No. 7, 2007, pp. 2455-2462. doi: 10.1007/s10853-006-1239-5
47. Hou, X.; Struble, L. J.; and Kirkpatrick, R. J., “Formation of ASR Gel and the Roles of CSH and Portlandite,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1683-1696. doi: 10.1016/j.cemconres.2004.03.026