Title:
Design versus Assessment of Concrete Structures Using Stress Fields and Strut-and-Tie Models
Author(s):
Aurelio Muttoni, Miguel Fernández Ruiz, and Filip Niketic
Publication:
Structural Journal
Volume:
112
Issue:
5
Appears on pages(s):
605-616
Keywords:
assessment; design; limit analysis; stress fields; strut-andtie models
DOI:
10.14359/51687710
Date:
9/1/2015
Abstract:
Stress fields and strut-and-tie models are widely used for design and assessment of structural concrete members. Although they are often used in the same manner for both purposes, developing suitable stress fields and strut-and-tie models for the design of a new structure or for assessment of the strength of an existing one should not necessarily be performed following the same approach. For design, simple load-carrying models in equilibrium with the external actions can be considered. From the various possibilities, those leading to better behavior at serviceability limit state and to simple reinforcement layouts should be selected (or a combination
of them). For the assessment of existing structures, however,
avoiding unnecessary strengthening (or minimizing it) should be the objective. Thus, simple stress fields or strut-and-tie models are to be iteratively refined whenever the calculated strength of the member is insufficient with respect to the design actions. This can be done by accounting for kinematic considerations to calculate the higher possible strength of the member accounting for its actual geometry and available reinforcement (allowing to calculate the exact solution according to limit analysis). In this paper, the differences between the two approaches for design and assessment are clarified and explained on the basis of some examples. A number of strategies are comprehensibly presented to obtain
suitable stress fields and strut-and-tie models in both cases. The
results of exact solutions according to limit analysis (developed
using elastic-plastic stress fields) are finally compared to 150 tests of the literature showing the consistency and generality of the presented approaches.
Related References:
1. fib Model Code for Concrete Structures 2010, Fédération Internationale du Béton, Lausanne, Switzerland, 2013, 434 pp.
2. ACI Committee 437, “Strength Evaluation of Existing Concrete Buildings (ACI 437R-03),” American Concrete Institute, Farmington Hills, MI, 2003, 28 pp.
3. ACI Committee 364, “Guide for Evaluation of Concrete Structures before Rehabilitation (ACI 364.1R-07),” American Concrete Institute, Farmington Hills, MI, 2007, 18 pp.
4. Muttoni, A., and Fernández Ruiz, M., “Levels-of-Approximation Approach in Codes of Practice,” Structural Engineering International, V. 22, No. 2, 2012, pp. 190-194. doi: 10.2749/101686612X13291382990688
5. SIA 269:2011, “Existing Structures – Bases,” Swiss Society of Engineers and Architects, Zurich, Switzerland, 2011, 28 pp.
6. Nielsen, M. P., and Hoang, L. C., Limit Analysis and Concrete Plasticity, third edition, CRC Press, Boca Raton, FL, 2011, 796 pp.
7. Drucker, D. C., On Structural Concrete and the Theorems of Limit Analysis, International Association for Bridge and Structural Engineering, Zürich, Switzerland, 1961, 36 pp.
8. Muttoni, A.; Schwartz, J.; and Thürlimann, B., Design of Concrete Structures with Stress Fields, Birkhäuser, Basel-Boston-Berlin, Switzerland, 1997, 143 pp.
9. Chen, W.-F., and Han, D.-J., Plasticity for Structural Engineers, J. Ross Publishing, Fort Lauderdale, FL, 2007, 255 pp.
10. Ritter, W., “Die Bauweise Hennebique,” Schweizerische Bauzeitung, V. 33, No. 7, 1899, pp. 41-61.
11. Mörsch, E., Der Eisenbetonbau, seine Theorie und Anwendung, third edition, Verlag von Konrad Wittwer, Hamburg, Germany, 1908, 376 pp.
12. Leonhardt, F., and Walther, R., Wandartige Träger, Deutscher Ausschuss für Stahlbeton, Berlin, Germany, 1966, 159 pp.
13. Schlaich, J., and Weischede, D., “Ein praktisches Verfahren zum methodischen Bemessen und Konstruieren im Stahlbetonbau,” Bulletin d’Information No. 150, Comité Euro-International du Béton, Lausanne, Switzerland, 1982, 163 pp.
14. Schlaich, J.; Schäfer, K.; and Jennewein, M., “Toward a Consistent Design of Structural Concrete,” PCI Journal, V. 32, No. 3, 1987, pp. 74-150. doi: 10.15554/pcij.05011987.74.150
15. Biondini, F.; Bontempi, F.; and Malerba, P. G., “Stress Path Adapting Strut-and-Tie Models in Cracked and Uncracked R.C. Elements,” Structural Engineering & Mechanics, V. 12, No. 6, 2001, pp. 685-698. doi: 10.12989/sem.2001.12.6.685
16. Gvozdev, A. A., “The Determination of the Value of the Collapse Load for Statically Indeterminate Systems Undergoing Plastic Deformation,” International Journal of Mechanical Sciences, V. 1, No. 4, 1960, pp. 322-335. doi: 10.1016/0020-7403(60)90051-5
17. Thürlimann, B.; Marti, P.; Pralong, J.; Ritz, P.; and Zimmerli, B., Anwendung der Plastizitätstheorie auf Stahlbeton, Institut für Baustatik und Konstruction, ETH Zürich, 1983, 252 pp.
18. Fernández Ruiz, M., and Muttoni, A., “On Development of Suitable Stress Fields for Structural Concrete,” ACI Structural Journal, V. 104, No. 4, July-Aug. 2007, pp. 495-502.
19. Muttoni, A., Die Anwendbarkeit der Plastizitätstheorie in der Bemessung von Stahlbeton, Birkhäuser Verlag, Institut für Baustatik und Konstruktion, ETH Zürich, Basel, Switzerland, 1990, 176 pp.
20. Vecchio, F. J., and Collins, M. P., “The Modified Compression-Field theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal Proceedings, V. 83, No. 2, Mar.-Apr. 1986, pp. 219-231.
21. Fernández Ruiz, M., and Muttoni, A., “Shear Strength of Thin-Webbed Post-Tensioned Beams,” ACI Structural Journal, V. 105, No. 3, May-June 2008, pp. 308-317.
22. Rupf, M.; Fernández Ruiz, M.; and Muttoni, A., “Post-Tensioned Girders with Low Amounts of Shear Reinforcement: Shear Strength and Influence of Flanges,” Engineering Structures, V. 56, Nov, 2013, pp. 357-371. doi: 10.1016/j.engstruct.2013.05.024
23. Fernández Ruiz, M.; Muttoni, A.; and Gambarova, P., “Relationship between Nonlinear Creep and Cracking of Concrete under Uniaxial Compression,” Journal of Advanced Concrete Technology, V. 5, No. 3, 2007, pp. 383-393. doi: 10.3151/jact.5.383
24. Lourenco, M. S., and Almeida, J. F., “Adaptive Stress Field Models: Formulation and Validation,” ACI Structural Journal, V. 110, No. 1, Jan.-Feb. 2013, pp. 71-81.
25. Bayrak, O., and Brown, M., “Minimum Transverse Reinforcement for Bottle-Shaped Struts,” ACI Structural Journal, V. 103, No. 6, Nov.-Dec. 2006, pp. 813-822.
26. Grob, J., and Thürlimann, B., “Ultimate Strength and Design of Reinforced Concrete Beams under Bending and Shear,” IABSE, V. 36, 1976, pp. 105-120.
27. Brown, M. D.; Sankovich, C. L.; Bayrak, O.; and Jirsa, J. O., “Behavior and Efficiency of Bottle-Shaped Struts,” ACI Structural Journal, V. 103, No. 3, May-June 2006, pp. 348-354.
28. Maxwell, B. S., and Breen, J. E., “Experimental Evaluation of Strut-and-Tie Model Applied to Deep Beam with Opening,” ACI Structural Journal, V. 97, No. 1, Jan.-Feb. 2000, pp. 142-149.
29. Campana, S.; Fernández Ruiz, M.; and Muttoni, A., “Behaviour of Nodal Regions of Reinforced Concrete Frames Subjected to Opening Moments and Proposals for their Reinforcement,” Engineering Structures, V. 51, 2013, pp. 200-210. doi: 10.1016/j.engstruct.2013.01.029
30. Najafian, H. A., and Vollum, R. L., “Optimising Reinforcement Design in D Regions Using Non-Linear Finite-Element Analysis,” Magazine of Concrete Research, V. 65, No. 4, 2013, pp. 234-247. doi: 10.1680/macr.12.00063
31. Kostic, N., “Topologie des Champs de Contraintes pour le Dimensionnement des Structures en Béton Armé,” PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2009, 235 pp.
32. Kuchma, D.; Yindeesuk, S.; Nagle, T.; Hart, J.; and Lee, H. H., “Experimental Validation of Strut-and-Tie Method for Complex Regions,” ACI Structural Journal, V. 105, No. 5, Sept.-Oct. 2008, pp. 578-589.
33. Muttoni, A.; Kostic, N.; and Fernández Ruiz, M., “Discussion of paper “Factors Affecting Strength of Elements Designed Using Strut-and-Tie Models,” ACI Structural Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 233-237.
34. Muttoni, A., and Fernández Ruiz, M., “Shear Strength of Members without Transverse Reinforcement as Function of Critical Shear Crack Width,” ACI Structural Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 163-172.