Title:
Material Behavior of Ultra-High-Strength Concrete under Multiaxial Stress States
Author(s):
Robert Ritter and Manfred Curbach
Publication:
Materials Journal
Volume:
112
Issue:
5
Appears on pages(s):
641-652
Keywords:
compression load; multiaxial load; multiaxial strength; multiaxial stress state; multiaxial stress-strain behavior; multiaxial stress-strain relationship; tension-compression-compression load; triaxial load; ultra-high-strength concrete
DOI:
10.14359/51687663
Date:
9/1/2015
Abstract:
To evaluate new fields of application of concrete structures in
any processes where complex stress states occur, and to optimize concrete structure geometries regarding such applications, the material behavior of concrete under multiaxial loading has to be known. With the aim of determining the material behavior of an ultra-high-strength concrete (UHSC), 35 multiaxial stress states with primarily one tensile stress component are examined and the measured stress-strain curves are shown. Using the test results, the arbitrary parameters of a damage-based material law concerning the single-stress ratios are determined. To describe the material behavior for load-induced isotropic and orthotropic damage, an approximation of the calculated arbitrary parameters is deduced. These enable determining the material behavior of the investigated UHSC for any stress ratios. The prediction of the described material law is compared and discussed regarding the measured stress-strain curves and the maximum strength values from the tests.
Related References:
1. Kurth, W., “Wirtschaftliche Kaltumformung von dünnen Blechen in kleinen Serien,” Fertigungstechnik, V. 6, No. 2, 1956, p. 64.
2. Schwartzentruber, A.; Bournazel, J.-P.; and Gacel, J.-N., “Hydraulic Concrete as a Deep-Drawing Tool of Sheet Steel,” Cement and Concrete Research, V. 29, No. 2, 1999, pp. 267-271. doi: 10.1016/S0008-8846(98)00208-7
3. Kleiner, M.; Curbach, M.; Tekkaya, A. E.; Ritter, R.; Speck, K.; and Trompeter, M., “Development of Ultra High Performance Concrete Dies for Sheet Metal Hydroforming,” Production Engineering—Research for Development, V. 2, No. 2, 2008, pp. 201-208.
4. Ritter, R.; Curbach, M.; Trompeter, M.; and Tekkaya, A. E., “Material Behavior of an UHPC Forming Die for Sheet Metal Hydroforming,” ACI Materials Journal, V. 106, No. 6, Nov.-Dec. 2009, pp. 515-522.
5. Ottosen, N. S., “A Failure Criterion for Concrete,” Journal of the Engineering Mechanics Division, ASCE, V. 103, 1977, pp. 527-535.
6. Willam, K. J., and Warnke, E. P., “Constitutive Model for the Triaxial Behavior of Concrete,” Concrete Structures Subjected to Triaxial Stresses: IABSE-Report No. 19, Bergamo, Italy, 1974, 30 pp.
7. Hampel, T.; Speck, K.; Scheerer, S.; Ritter, R.; and Curbach, M., “High Performance Concrete under Biaxial and Triaxial Loads,” Journal of Engineering Mechanics, ASCE, V. 135, No. 11, 2009, pp. 1274-1280. doi: 10.1061/(ASCE)0733-9399(2009)135:11(1274)
8. Hilsdorf, H., “Die Bestimmung der zweiachsigen Festigkeit des Betons,” Schriftenreihe Deutscher Ausschuss für Stahlbeton, Heft 173, Verlag Wilhelm Ernst & Sohn, 1965, 68 pp.
9. Ritter, R., and Curbach, M., “Strain Measurement of Steel Fiber-Reinforced Concrete under Multiaxial Loads with Fiber Bragg Grating,” ACI Materials Journal, V. 110, No. 1, Jan.-Feb. 2013, pp. 57-65.
10. Ritter, R., “Verformungsverhalten und Grenzflächen von Ultrahochleistungsbeton unter mehraxialer Beanspruchung,” PhD thesis, Technische Universität Dresden, Dresden, Germany, 2014, 280 pp.
11. Ritter, R., and Curbach, M., “Zugkrafteinleitung in Beton bei mehraxialen Belastungsversuchen,“ Beton- und Stahlbetonbau, V. 109, No. 11, 2014, pp. 1-10.
12. Kupfer, H., “Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung unter besonderer Berücksichtigung der zweiachsigen Beanspruchung,” Deutscher Ausschuss für Stahlbeton, Heft 229, Verlag Ernst & Sohn, Berlin, Germany, 1973, pp. 1-106.
13. Launay, P.; Gachon, H.; and Poitevin, P., “Déformation et Résistance Ultime du Béton sous Étreinte Triaxiale,” Annales de L’Institut Technique du Batiment et des Travaux Publics, V. 269, 1970, pp. 22-48.
14. Chern, J.-C.; Yang, H.-J.; and Chen, H.-W., “Behavior of Steel Fiber Reinforced Concrete in Multiaxial Loading,” ACI Materials Journal, V. 89, No. 1, Jan.-Feb. 1992, pp. 32-40.
15. Rizzi, E., and Carol, I., “A Formulation of Anisotropic Elastic Damage Using Compact Tensor Formalism,” Journal of Elasticity, V. 64, No. 2/3, 2001, pp. 85-109. doi: 10.1023/A:1015284701032
16. Kitzig, M., and Häußler-Combe, U., “Modeling of Plain Concrete Structures Based on an Anisotropic Damage Formulation,” Materials and Structures, V. 44, No. 10, 2011, pp. 1837-1853. doi: 10.1617/s11527-011-9741-x
17. Kitzig, M., “Eine Anisotrope, Schädigungsmechanische Materialbeschreibung zur Simulation des Tragverhaltens unbewehrter Betonstrukturen,” PhD thesis, Technische Universität Dresden, Dresden, Germany, 2011, 169 pp.
18. Bachmann, H., “Die Massenträgheit in einem Pseudo-Stoffgesetz für Beton bei schneller Zugbeanspruchung,” PhD thesis, Universität Fridericiana zu Karlsruhe, Fakultät für Bauingenieur- und Vermessungswesen, 1993, 231 pp.