FATIGUE BEHAVIOR OF REINFORCED CONCRETE HAUNCHED BEAMS WITHOUT STIRRUPS

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: FATIGUE BEHAVIOR OF REINFORCED CONCRETE HAUNCHED BEAMS WITHOUT STIRRUPS

Author(s): Carlos Zanuy, Juan M. Gallego, and Luis Albajar

Publication: Structural Journal

Volume: 112

Issue: 3

Appears on pages(s): 371-382

Keywords: bridge slabs; fatigue; haunched beams; reinforced concrete beams; shear

DOI: 10.14359/51687411

Date: 5/1/2015

Abstract:
In this paper, results of fatigue tests on reinforced concrete haunched beams without stirrups are presented for the first time. Two types of failure modes have been obtained, either due to fatigue of the reinforcement or due to shear fatigue. In addition, progressive increase of deflections with load cycles was measured. An analysis of tests is carried out in terms of the consequences of fatigue loading on ultimate strength and serviceability of reinforced concrete. Regarding fatigue strength, the limitations of existing models are shown and discussed. Regarding serviceability, it is shown that deflections are even higher than those theoretically obtained by the fully cracked member. This is due to development of shear deformations, cyclic creep, and negative tension stiffening during unloading stages.

Related References:

1. Rombach, G. A., and Latte, S., “Shear Resistance of Bridge Decks without Shear Reinforcement,” fib Symposium Amsterdam 2008 — Tailor Made Concrete Structures, Taylor & Francis Group, London, UK, 2008, pp. 519-525.

2. EN 1992-1-1:2004, “Eurocode EC-2,” Comité Européen de Normalisation, Brussels, Belgium, 2004, 222 pp.

3. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.

4. DIN 1045-1, “Tragwerke aus Beton, Stahlbeton und Spannbeton,” Deutsches Institut für Normung, Beuth Verlag GmbH, Berlin, Germany, 2004, 211 pp.

5. MacLeod, I. A., and Houmsi, A., “Shear Strength of Haunched Beams without Shear Reinforcement,” ACI Structural Journal, V. 91, No. 1, Jan.-Feb. 1994, pp. 79-89.

6. Nghiep, V. H., “Shear Design of Straight and Haunched Concrete Beams without Stirrups,” PhD thesis, Technische Universität Hamburg-Harburg, Hamburg, Germany, 2011, 136 pp.

7. Latte, S., “Zur Tragfähigkeit von Stahlbetonfahrbahnplatten ohne Querkraftbewehrung (On the Shear Strength Capacity of Reinforced Concrete Bridge Slabs without Shear Reinforcement),” PhD thesis, Technichse Universität Hamburg-Harburg, Hamburg, Germany, 2010, 169 pp.

8. Schläfli, M., and Brühwiler, E., “Fatigue of Existing Reinforced Concrete Bridge Deck Slabs,” Engineering Structures, V. 20, No. 11, 1998, pp. 991-998. doi: 10.1016/S0141-0296(97)00194-6

9. Thandavamoorthy, T. S., “Static and Fatigue of High-Ductility Bars Reinforced Concrete Beams,” Journal of Materials in Civil Engineering, ASCE, V. 11, No. 1, 1999, pp. 41-50. doi: 10.1061/(ASCE)0899-1561(1999)11:1(41)

10. Brühwiler, E.; Pimentel, M.; and Figueiras, J.,, “Fatigue Life of Short-Span Reinforced Concrete Railway Bridges,” Structural Concrete, V. 9, No. 4, 2008, pp. 215-222. doi: 10.1680/stco.2008.9.4.215

11. Lambotte, H.; Baus, R.; and Motteu, H., “Essais de flexion sour poutres en béton armé. Rapport de recherche nos. 1-3 (Flexural Tests on Reinforced Concrete Beams. Test reports 1-3),” Centre scientifique et technique de la construction, Bruxelles, Belgium, 1965-1969, 58, 65, and 83 pp.

12. Zanuy, C.; Albajar, L.; and de la Fuente, P., “Sectional Analysis of Concrete Structures under Fatigue Loading,” ACI Structural Journal, V. 106, No. 5, Sept.-Oct. 2009, pp. 667-677.

13. Zanuy, C.; Albajar, L.; and De la Fuente, P., “El Proceso de Fatiga del Hormigón y su Influencia Estructural,” Materiales de Construcción, V. 61, No. 303, 09 2011, pp. 385-399. doi: 10.3989/mc.2010.54609

14. Chang, T. S., and Kesler, C. E., “Fatigue Behavior of Reinforced Concrete Beams,” ACI Journal Proceedings, V. 55, No. 8, Aug. 1958, pp. 245-254.

15. Chang, T. S., and Kesler, C. E., “Static and Fatigue Strength in Shear of Beams with Tensile Reinforcement,” ACI Journal Proceedings, V. 54, No. 6, June 1958, pp. 1033-1057.

16. Taylor, R., “Discussion of a paper by Chang and Kesler: Fatigue Behavior of Reinforced Concrete Beams,” ACI Journal Proceedings, V. 56, No. 9, Sept. 1959, pp. 1011-1016.

17. Verna, J. R., and Stelson, T. E., “Failure of Small Reinforced Concrete Beams under Repeated Loads,” ACI Journal Proceedings, V. 59, No. 10, Oct. 1962, pp. 1489-1504.

18. ACI Committee 215, “Considerations for Design of Concrete Structures Subjected to Fatigue Loading (ACI 215R-74(92)) (Reapproved 1997),” American Concrete Institute, Farmington Hills, MI, 1992, 24 pp.

19. fib, “Bulletins 65-66. Model Code for Concrete Structures 2010. Final Complete Draft,” Lausanne, Switzerland, 2013, 350 and 370 pp.

20. CEB-FIP, “CEB-FIP Model Code (1990),” Lausanne, Switzerland, 1991, 460 pp.

21. Ministerio de Fomento, “Instrucción española de hormigón estructural EHE-08 (Spanish Code for Structural Concrete),” Madrid, Spain, 2008, 620 pp.

22. Lovegrove, J. M., and Din, S. E., “Deflection and Cracking of Reinforced Concrete under Repeated Loading and Fatigue,” Fatigue of Concrete Structures, SP-75, S. P. Shah, ed., American Concrete Institute, Farmington Hills, MI, 1982, pp. 133-152.

23. Johansson, U., “Fatigue Tests and Analysis of Reinforced Concrete Bridge Deck Models,” PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 2004, 197 pp.

24. Oh, B. H., and Kim, S. H., “Realistic Models for Local Bond Stress-Slip of Reinforced Concrete under Repeated Loading,” Journal of Structural Engineering, ASCE, V. 133, No. 2, 2007, pp. 216-224. doi: 10.1061/(ASCE)0733-9445(2007)133:2(216)

25. Oh, B. H., and Kim, S. H., “Advanced Crack Width Analysis of Reinforced Concrete Beams under Repeated Loads,” Journal of Structural Engineering, ASCE, V. 133, No. 3, 2007, pp. 411-420. doi: 10.1061/(ASCE)0733-9445(2007)133:3(411)

26. Muttoni, A., and Fernández Ruiz, M., “Concrete Cracking in Tension Members and Application to Deck Slabs of Bridges,” Journal of Bridge Engineering, ASCE, V. 12, No. 5, 2007, pp. 646-653. doi: 10.1061/(ASCE)1084-0702(2007)12:5(646)

27. Günther, G., and Mehlhorn, G., “Tension-Stiffening, Crack Spacings, Crack Widths and Bond-Slip,” Protection of Concrete, E&FN Spon, London, UK, 1990, pp. 589-600.

28. Zanuy, C., “Investigating the Negative Tension Stiffening Effect of Reinforced Concrete,” Structural Engineering & Mechanics, V. 34, No. 2, 2010, pp. 189-211. doi: 10.12989/sem.2010.34.2.189

29. Zanuy, C.; De la Fuente, P.; and Albajar, L., “Estimation of Parameters Defining Negative Tension Stiffening,” Engineering Structures, V. 32, No. 10, 2010, pp. 3355-3362.

30. Leonhardt, F., and Walter, R., “Schubversuche an einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung (Shear Test on Simply Supported R/C Beams with and without Stirrups),” Deutscher Ausschuss für Stahlbeton, Bulletin 151, Berlin, Germany, 1962, 120 pp.

31. Beyer, K.; Dazio, A.; and Priestley, M. J. N., “Shear Deformations of Slender Reinforced Concrete Walls under Seismic Loading,” ACI Structural Journal, V. 108, No. 2, Mar.-Apr. 2011, pp. 167-177.

32. Nie, J., and Cai, C. S., “Deflection of Cracked RC Beams under Sustained Loading,” Journal of Structural Engineering, ASCE, V. 126, No. 6, June 2000, pp. 708-716. doi: 10.1061/(ASCE)0733-9445(2000)126:6(708)


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer