Title:
EFFECT OF CARBON FIBERS ON THERMAL AND MECHANICAL PROPERTIES OF METAKAOLIN-FLY ASH BASED GEOPOLYMERS
Author(s):
Hai-Yan Zhang, Venkatesh Kodur, Bo Wu, Liang Cao, and Shu-Liang Qi
Publication:
Materials Journal
Volume:
112
Issue:
3
Appears on pages(s):
375-384
Keywords:
carbon fiber; fly ash; geopolymer; high temperature properties; metakaolin.
DOI:
10.14359/51687391
Date:
5/1/2015
Abstract:
This paper presents results from a set of experiments carried out to evaluate the effect of carbon fibers on thermal and mechanical properties of metakaolin fly-ash-based geopolymers. Bending and compression tests were conducted at ambient temperature and after exposure to elevated temperatures on fiber-reinforced geopolymers with varing proportions of carbon fibers, metakaolin, and fly ash. Also, crack propagation, dimensional changes, and temperature gradients in geopolymers with different carbon fiber content were recorded during and after heating. Data from these tests show that the addition of short carbon fibers in geopolymers provides an effective mechanism for controlling temperature-induced cracking and thermal deformation, and this in turn enhances bending strength under high temperatures. The enhancement in bending strength under high temperatures, due to the presence of carbon fibers, is higher in geopolymers with higher fly ash content than that with lower fly ash content. Further, the addition of carbon fibers has no significant effect on compressive strength of geopolymers both
at ambient temperature and after exposure to high temperatures.
Related References:
1. Davidovits, J., “Geopolymers and Geopolymeric Materials,” Journal of Thermal Analysis, V. 35, No. 2, 1989, pp. 429-441. doi: 10.1007/BF01904446
2. Bernal, S. A.; Rodríguez, E. D.; de Gutiérrez, R.; Gordillo, M.; and Provis, J. L., “Mechanical and Thermal Characterisation of Geopolymers Based on Silicate-Activated Metakaolin/Slag Blends,” Journal of Materials Science, V. 46, No. 16, 2011, pp. 5477-5486. doi: 10.1007/s10853-011-5490-z
3. He, J. A.; Zhang, G. P.; Hou, S. A.; and Cai, C. S., “Geopolymer-Based Smart Adhesives for Infrastructure Health Monitoring: Concept and Feasibility,” Journal of Materials in Civil Engineering, ASCE, V. 23, No. 2, 2011, pp. 100-109. doi: 10.1061/(ASCE)MT.1943-5533.0000140
4. Kuenzel, C.; Vandeperre, L. J.; Donatello, S.; Boccaccini, A. R.; and Cheeseman, C., “Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers,” Journal of the American Ceramic Society, V. 95, No. 10, 2012, pp. 3270-3277. doi: 10.1111/j.1551-2916.2012.05380.x
5. Kong, D. L.; Sanjayan, J. G.; and Sagoe-Crentsil, K., “Comparative Performance of Geopolymers Made with Metakaolin and Fly Ash after Exposure to Elevated Temperatures,” Cement and Concrete Research, V. 37, No. 12, 2007, pp. 1583-1589. doi: 10.1016/j.cemconres.2007.08.021
6. Rill, E.; Lowry, D. R.; and Kriven, W. M., “Properties of Basalt Fiber Reinforced Geopolymer Composites,” Strategic Materials and Computational Design, W. M. Kriven, Y. Zhou, and M. Radovic, eds., 2010, pp. 57-67.
7. Zhang, Y. J.; Li, S.; Wang, Y. C.; and Xu, D. L., “Microstructural and Strength Evolutions of Geopolymer Composite Reinforced by Resin Exposed to Elevated Temperature,” Journal of Non-Crystalline Solids, V. 358, No. 3, 2012, pp. 620-624. doi: 10.1016/j.jnoncrysol.2011.11.006
8. Fernández-Jiménez, A.; Monzó, M.; Vicent, M.; Barba, A.; and Palomo, A., “Alkaline Activation of Metakaolin-Fly Ash Mixtures: Obtain of Zeoceramics and Zeocements,” Microporous and Mesoporous Materials, V. 108, No. 1-3, 2008, pp. 41-49. doi: 10.1016/j.micromeso.2007.03.024
9. Zhang, H. Y.; Kodur, V.; Qi, S. L.; Cao, L.; and Wu, B., “Development of Metakaolin-Fly Ash Based Geopolymers for Fire Resistance Applications,” Construction & Building Materials, V. 55, Mar, 2014, pp. 38-45. doi: 10.1016/j.conbuildmat.2014.01.040
10. Kang, S. T.; Lee, B. Y.; Kim, J. K.; and Kim, Y. Y., “The Effect of Fibre Distribution Characteristics on the Flexural Strength of Steel Fibre-Reinforced Ultra High Strength Concrete,” Construction & Building Materials, V. 25, No. 5, 2011, pp. 2450-2457. doi: 10.1016/j.conbuildmat.2010.11.057
11. Sideris, K. K., and Manita, P., “Residual Mechanical Characteristics and Spalling Resistance of Fiber Reinforced Self-Compacting Concretes Exposed to Elevated Temperatures,” Construction & Building Materials, V. 41, Apr, 2013, pp. 296-302. doi: 10.1016/j.conbuildmat.2012.11.093
12. Shaikh, F. U. A., “Review of Mechanical Properties of Short Fibre Reinforced Geopolymer Composites,” Construction & Building Materials, V. 43, June, 2013, pp. 37-49. doi: 10.1016/j.conbuildmat.2013.01.026
13. Zhang, Z. H.; Yao, X.; Zhu, H. J.; Hua, S. D.; and Chen, Y., “Preparation and Mechanical Properties of Polypropylene Fiber Reinforced Calcined Kaolin-Fly Ash Based Geopolymer,” Journal of Central South University of Technology, V. 16, No. 1, 2009, pp. 49-52. doi: 10.1007/s11771-009-0008-4
14. Aydın, S., and Baradan, B., “The Effect of Fiber Properties on High Performance Alkali-Activated Slag/Silica Fume Mortars,” Composites. Part B, Engineering, V. 45, No. 1, 2013, pp. 63-69. doi: 10.1016/j.compositesb.2012.09.080
15. Li, W. M., and Xu, J. Y., “Impact Characterization of Basalt Fiber Reinforced Geopolymeric Concrete Using a 100-mm-Diameter Split Hopkinson Pressure Bar,” Materials Science and Engineering A, V. 513-514, July, 2009, pp. 145-153.
16. Shaikh, F. U. A., “Deflection Hardening Behaviour of Short Fibre Reinforced Fly Ash Based Geopolymer Composites,” Materials & Design, V. 50, Sept, 2013, pp. 674-682. doi: 10.1016/j.matdes.2013.03.063
17. Zhang, Y. S.; Sun, W.; Li, Z. J.; and Zhou, X. M., “Geopolymer Extruded Composites with Incorporated Fly Ash and Polyvinyl Alcohol Short Fiber,” ACI Materials Journal, V. 106, No. 1, Jan.-Feb. 2009, pp. 3-10.
18. Lin, T. S.; Jia, D. C.; He, P. G.; and Wang, M. R., “Thermal-Mechanical Properties of Short Carbon Fiber Reinforced Geopolymer Matrix Composites Subjected to Thermal Load,” Journal of Central South University of Technology, V. 16, No. 6, 2009, pp. 881-886. doi: 10.1007/s11771-009-0146-8
19. Musil, S. S.; Kutyla, G.; and Kriven, W. M., “The Effect of Basalt Chopped Fiber Reinforcement on the Mechanical Properties of Potassium Based Geopolymer,” Developments in Strategic Materials and Computational Design III, W. M. Kriven, A. L. Gyekenyesi, G. Westin, and J. Y. Wang, eds., Dec. 2013, pp. 31-42.
20. Giancaspro, J. W., “Influence of Reinforcement Type on the Mechanical Behavior and Fire Response of Hybrid Composites and Sandwich Structures,” PhD thesis, Rutgers University, New Brunswick, NJ, 2004, 513 pp.
21. Puertas, F.; Amat, T.; Fernandez-Jimenez, A.; and Vazquez, T., “Mechanical and Durable Behaviour of Alkaline Cement Mortars Reinforced with Polypropylene Fibres,” Cement and Concrete Research, V. 33, No. 12, 2003, pp. 2031-2036. doi: 10.1016/S0008-8846(03)00222-9
22. National Standard of People’s Republic of China, “Methods for Testing Uniformity of Concrete Admixture (GB/T 8077-2012),” Beijing, China, 2012, 20 pp.
23. National Standard of People’s Republic of China, “Method of Testing Cements—Determination of Strength (GB/T17671-1999),” Beijing, China, 1999, 12 pp.
24. ASTM C348-08, “Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars,” ASTM International, West Conshohocken, PA, 2008, 6 pp.
25. Zhao, B. H.; Liu, Y. S.; He, S. H.; and Zhang, Y., “The Effects of Basalt Fiber Parameter on the Fluidity of the Cement Mortar,” Journal of Wuhan University of Technology, V. 31, No. 7, Apr. 2009, pp. 5-8.
26. Lin, T. S.; Jia, D. C.; He, P. G.; and Wang, M. R., “In Situ Crack Growth Observation and Fracture Behavior of Short Carbon Fiber Reinforced Geopolymer Matrix Composites,” Materials Science and Engineering A, V. 527, No. 9, 2010, pp. 2404-2407. doi: 10.1016/j.msea.2009.12.004
27. Duxson, P.; Lukey, G. C.; and van Deventer, J. S. J., “Thermal Evolution of Metakaolin Geopolymers: Part 1—Physical Evolution,” Journal of Non-Crystalline Solids, V. 352, No. 52-54, 2006, pp. 5541-5555. doi: 10.1016/j.jnoncrysol.2006.09.019
28. Pradere, C., and Sauder, C., “Transverse and Longitudinal Coefficient of Thermal Expansion of Carbon Fibers at High Temperatures (300-2500 K),” Carbon, V. 46, No. 14, 2008, pp. 1874-1884. doi: 10.1016/j.carbon.2008.07.035
29. Kamhangrittirong, P.; Suwanvitaya, P.; Suwanvitaya, P.; and Chindaprasirt, P., “Synthesis and Properties of High Calcium Fly Ash Based Geopolymer for Concrete Applications,” 36th Conference on Our World in Concrete & Structures, Singapore, 2011.
30. Zhang, X.; Fujiwara, S.; and Fujii, M., “Measurements of Thermal Conductivity and Electrical Conductivity of a Single Carbon Fiber,” International Journal of Thermophysics, V. 21, No. 4, 2000, pp. 965-980. doi: 10.1023/A:1006674510648
31. Bernal, S.; De Gutierrez, R.; Delvasto, S.; and Rodriguez, E., “Performance of an Alkali-Activated Slag Concrete Reinforced with Steel Fibers,” Construction & Building Materials, V. 24, No. 2, 2010, pp. 208-214. doi: 10.1016/j.conbuildmat.2007.10.027
32. Dias, D. P., and Thaumaturgo, C., “Fracture Toughness of Geopolymeric Concretes Reinforced with Basalt Fibers,” Cement and Concrete Composites, V. 27, No. 1, 2005, pp. 49-54. doi: 10.1016/j.cemconcomp.2004.02.044
33. Zhang, Y. J.; Li, S.; Wang, Y. C.; and Xu, D. L., “Microstructural and Strength Evolutions of Geopolymer Composite Reinforced by Resin Exposed to Elevated Temperature,” Journal of Non-Crystalline Solids, V. 358, No. 3, 2012, pp. 620-624. doi: 10.1016/j.jnoncrysol.2011.11.006