Double-Punch Test of Fiber-Reinforced Concrete: Effect of Specimen Origin and Size

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Double-Punch Test of Fiber-Reinforced Concrete: Effect of Specimen Origin and Size

Author(s): Carlos Aire, Sergio Carmona, Antonio Aguado, and Climent Molins

Publication: Materials Journal

Volume: 112

Issue: 2

Appears on pages(s): 199-208

Keywords: Barcelona test; double-punch test; fiber-reinforced concrete; residual strength; toughness

DOI: 10.14359/51687362

Date: 3/1/2015

Abstract:
One of the main advantages of the Barcelona test is that the properties of fiber-reinforced concrete (FRC) can be determined by using cylindrical specimens, thereby permitting the use of cores to control the quality of concrete used in construction. Using the results of an extensive experimental campaign, this paper establishes the relationship between the unitary load of cracking, residual strength and toughness of molded specimens, and cores of concretes reinforced with different types of fibers but with the same aspect ratio. The fiber diameter is observed to significantly influence in the properties of molded specimens, whereas in the cores, the number of fibers that lose anchoring due drilling determines the response of the FRC.

Related References:

1. Shah, A. A., and Ribakov, Y., “Recent Trends in Steel Fibred High Strength Concrete,” Materials & Design, V. 32, No. 8-9, 2011, pp. 4122-4151. doi: 10.1016/j.matdes.2011.03.030

2. ACI Committee 544, “Report on Fiber Reinforced Concrete (544.1R-96) (Reapproved 2009),” American Concrete Institute, Farmington Hills, MI, 2009, 66 pp.

3. Carmona, S., and Aguado, A., “New Model for the Indirect Determination of the Tensile Stress-Strain Curve of Concrete by Means of the Brazilian Test,” Materials and Structures, V. 45, No. 10, 2012, pp. 1473-1485. doi: 10.1617/s11527-012-9851-0

4. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary,” American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.

5. fib Bulletin 55, “Model Code 2010—First Complete Draft,” fédération internationale du béton, Lausanne, Switzerland, 2010, 318 pp.

6. EFNARC, “European Specification for Sprayed Concrete,” Surrey, UK, 1996, 30 pp.

7. EFNARC, “Testing Sprayed Concrete: EFNARC Three Point Bending Test on Square Panel with Notch—Flexural Tensile Strength of Fibre Concrete on Sprayed Test Specimen,” Surrey, UK, 2011, 14 pp.

8. ASTM C1609/C1609M-12, “Standard Test method for Flexural Performance of Fiber Reinforced Concrete (Using Beam with Third-Point Loading),” ASTM International, West Conshohocken, PA, 2012, 9 pp.

9. EN 14651:2005, “Test Method for Metallic Fibre Concrete—Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual),” British Standards Institution, London, UK, 2005, 20 pp.

10. NBN B 15-238:1992, “Test on Fibre Reinforced Concrete—Bending Test on Prismatic Samples,” Bureau for Standardisation, Brussels, Belgium, 1992.

11. JCI SF-4, “Method of Test for Flexural Strength and Flexural Toughness of Fiber Reinforced Concrete,” Japan Concrete Institute, Tokyo, Japan, 1984.

12. UNE 83-510, “Hormigones con Fibras. Determinación del Índice de Tenacidad y Resistencia a Primera Fisura,” AENOR, Madrid, Spain, 2004.

13. ASTM C1550-12, “Standard Test Method for Flexural Toughness of Fiber Reinforced Concrete (Using Centrally Loaded Round Panel),” ASTM International, West Conshohocken, PA, 2012, 14 pp.

14. Molins, C.; Aguado, A.; and Saludes, S., “Double Punch Test to Control the Energy Dissipation in Tension of FRC (Barcelona Test),” Materials and Structures, V. 42, No. 4, 2009, pp. 415-425. doi: 10.1617/s11527-008-9391-9

15. Chao, S.-H.; Karki, N. B.; Cho, J.-S.; and Waweru, R. N., “Use of Double Punch Test to Evaluate the Mechanical Performance of Fiber Reinforced Concrete,” High Performance Fiber Reinforced Cement Composites 6, G. J. Parra-Montesinos, H. W. Reinhardt, and A. E. Naaman, eds., 2011, pp. 27-34.

16. Carmona, S.; Aguado, A.; and Molins, C., “Generalization of the Barcelona Test for the Toughness Control of FRC,” Materials and Structures, V. 45, No. 7, 2012, pp. 1053-1069. doi: 10.1617/s11527-011-9816-8

17. Chen, W. F., “Double Punch Test for Tensile Strength of Concrete,” ACI Journal Proceedings, V. 67, No. 12, Dec. 1970, pp. 993-995.

18. UNE 83-515, “Hormigones con Fibras. Determinación de la Resistencia a Fisuración, Tenacidad y Resistencia Residual a Tracción. Método Barcelona,” AENOR, Madrid, Spain, 2010.

19. Carmona Malatesta, S.; Aguado de Cea, A.; and Molins Borrell, C., “Characterization of the Properties of Steel Fiber Reinforced Concrete by Means of the Generalized Barcelona Test,” Construction and Building Materials, V. 48, 2013, pp. 592-600. doi: 10.1016/j.conbuildmat.2013.07.060

20. Pujadas, P.; Blanco, A.; Cavalaro, S.; de la Fuente, A.; and Aguado, A., “New Analytical Model to Generalize the Barcelona Test Using Axial Displacement,” Journal of Civil Engineering and Management, V. 19, No. 2, 2013, pp. 259-271. doi: 10.3846/13923730.2012.756425

21. Pros, A.; Diez, P.; and Molins, C., “Numerical Modeling of the Double Punch Test for Plain Concrete,” International Journal of Solids and Structures, V. 48, No. 7-8, 2011, pp. 1229-1238. doi: 10.1016/j.ijsolstr.2011.01.006

22. Pros, A.; Diez, P.; and Molins, C., “Modeling Steel Fiber Reinforced Concrete: Numerical Immersed Boundary Approach and a Phenomenological Mesomodel for Concrete-Fiber Interaction,” International Journal for Numerical Methods in Engineering, V. 90, No. 1, 2012, pp. 65-86. doi: 10.1002/nme.3312

23. Pujadas, P., “Caracterización y Diseño del Hormigón Reforzado con Fibras Plásticas,” PhD thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2013.

24. Blanco, A.; Pujadas, P.; Cavalaro, S.; de la Fuente, A.; and Aguado, A., “Constitutive Model for Fibre Reinforced Concrete Based on the Barcelona Test,” Cement and Concrete Composites, V. 53, 2014, pp. 327-340. doi: 10.1016/j.cemconcomp.2014.07.017

25. Mora, F.; Aguado, A.; and Molins, C., “Distribución y Orientación de Fibras en Dovelas Aplicando el Ensayo Barcelona,” Cemento-Hormigón, V. 931, 2009, pp. 28-37.

26. Ferrara, L.; Di Prisco, M.; and Lamperti, M. G. L., “Identification of the Stress-Crack Opening Behavior of HPFRCC: The Role of Flow-Induced Fiber Orientation,” Fracture Mechanics of Concrete and Concrete Structures—High Performance, Fiber Reinforced Concrete, Special Loadings and Structural Applications, Korea Concrete Institute, Seoul, Korea, 2010, pp. 1542-1550.

27. Pujadas, P.; Blanco, A.; Cavalaro, S.; de la Fuente, A.; and Aguado, A., “Multidirectional Double Punch Test to Assess the Post-Cracking Behaviour and Fibre Orientation of FRC,” Construction and Building Materials, V. 58, 2014, pp. 214-224. doi: 10.1016/j.conbuildmat.2014.02.023

28. Pujadas, P.; Blanco, A.; Cavalaro, S.; de la Fuente, A.; and Aguado, A., “Fibre Distribution in Macro-Plastic Fibre Reinforced Concrete Slab-Panels,” Construction and Building Materials, V. 64, 2014, pp. 496-503. doi: 10.1016/j.conbuildmat.2014.04.067

29. Yazıcı, Ş.; Inan, G.; and Tabak, V., “Effect of Aspect Ratio and Volume Fraction of Steel Fiber on the Mechanical Properties of SFRC,” Construction and Building Materials, V. 21, No. 6, 2007, pp. 1250-1253. doi: 10.1016/j.conbuildmat.2006.05.025

30. Marti, P., “Size Effect in Double-Punch Test on Concrete Cylinders,” ACI Materials Journal, V. 86, No. 6, Nov.-Dec. 1989, pp. 597-601.

31. Yi, S.; Yang, E.; and Choi, J., “Effect of Specimen Sizes, Specimen Shapes, and Placement Directions on Compressive Strength of Concrete,” Nuclear Engineering and Design, V. 236, No. 2, 2006, pp. 115-127. doi: 10.1016/j.nucengdes.2005.08.004

32. Yazıcı, Ş., and Sezer, G. I., “The Effect of Cylindrical Specimen Size on the Compressive Strength of Concrete,” Building and Environment, V. 42, No. 6, 2007, pp. 2417-2420. doi: 10.1016/j.buildenv.2006.06.014

33. Pérez Sánchez, M., “Relación entre la Resistencia a Compresión de Probetas—Testigo y Probetas Normalizadas,” Materiales de Construcción, V. 48, No. 249, 1998, pp. 45-53. doi: 10.3989/mc.1998.v48.i249.486

34. ASTM C42/C42M-13, “Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete,” ASTM International, West Conshohocken, PA, 2013, 7 pp.

35. Tokyay, M., and Özdemir, M., “Specimen Shape and Size Effect on the Compressive Strength of Higher Strength Concrete,” Cement and Concrete Research, V. 27, No. 8, 1997, pp. 1281-1289. doi: 10.1016/S0008-8846(97)00104-X

36. Turkel, A., and Ozkul, M. H., “Size Effect and Wall Effects on Compressive Strength of Concretes,” ACI Materials Journal, V. 107, No. 4, July-Aug. 2010, pp. 372-379.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer