Experimental Investigation on Quantitative Nanomechanical Properties of Cement Paste

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Experimental Investigation on Quantitative Nanomechanical Properties of Cement Paste

Author(s): Wengui Li, Jianzhuang Xiao, Shiho Kawashima, Gajendra S. Shekhawat, and Surendra P. Shah

Publication: Materials Journal

Volume: 112

Issue: 2

Appears on pages(s): 229-238

Keywords: cement paste; nanoindentation; nanomechanical properties; modulus mapping; PeakForce quantitative nanomechanical mapping (QNM)

DOI: 10.14359/51686986

Date: 3/1/2015

Abstract:
Nanoindentation, quantitative modulus mapping, and PeakForce quantitative nanomechanical mapping (QNM) are applied to investigate the quantitative nanomechanics of hardened cement paste at different spatial resolutions. The elastic modulus measured by static nanoindentation is slightly higher than those measured by the other methods. The average elastic modulus and probability obtained by PeakForce QNM are typically consistent with those found by modulus mapping. Both modulus mapping and Peak-Force QNM can be used to discriminate different material phases in cement paste at the nanoscale. It concludes that cement paste is a granular material in which the sub-micron scale grains or basic nanoscale units pack together. Moreover, the high resolution Peak-Force QNM can provide an efficient tool for identifying nanomechanical properties, particle sizes, and thickness of the interface between different nanoscale grains.

Related References:

1. Mondal, P.; Shah, S. P.; and Marks, L. D., “Nanoscale Characterization of Cementitious Materials,” ACI Materials Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 174-179.

2. Kim, J. H.; Mondal, P.; and Shah, S. P., “Cement-Based Materials Characterization at Nanoscale: Nanoindentation and Ultrasonic Atomic Force Microscopy (AFM),” Advances in the Material Science of Concrete, SP-270, American Concrete Institute, Farmington Hills, MI, 2010, pp. 67-76.

3. Trtik, P.; Kaufmann, J.; and Volz, U., “On the Use of Peak-Force Tapping Atomic Force Microscopy for Quantification of the Local Elastic Modulus in Hardened Cement Paste,” Cement and Concrete Research, V. 42, No. 1, 2012, pp. 215-221.

4. Jones, C. A.; Grasley, Z. C.; and Ohlhausen, J. A., “Measurement of Elastic Properties of Calcium Silicate Hydrate with Atomic Force Microscopy,” Cement and Concrete Composites, V. 34, No. 4, 2012, pp. 468-477.

5. Jones, C. A., and Grasley, Z. C., “Short-Term Creep of Cement Paste during Nanoindentation,” Cement and Concrete Composites, V. 33, No. 1, 2011, pp. 12-18.

6. Davydov, D.; Jirásek, M.; and Kopecký, L., “Critical Aspects of Nano-Indentation Technique in Application to Hardened Cement Paste,” Cement and Concrete Research, V. 41, No. 1, 2011, pp. 20-29.

7. Sorelli, L.; Constantinides, G.; Ulm, F.-J.; and Toutlemonde, F., “The Nano-Mechanical Signature of Ultra High Performance Concrete by Statistical Nanoindentation Techniques,” Cement and Concrete Research, V. 38, No. 12, 2008, pp. 1447-1456.

8. Syed Asif, S. A.; Wahl, K. J.; and Colton, R. J., “Nanoindentation and Contact Stiffness Measurement Using Force Modulation with a Capacitive Load-Displacement Transducer,” The Review of Scientific Instruments, V. 70, No. 5, 1999, pp. 2408-2413.

9. Syed Asif, S. A.; Wahl, K. J.; Colton, R. J.; and Warren, O. L., “Quantitative Imaging of Nanoscale Mechanical Properties Using Hybrid Nanoindentation and Force Modulation,” Journal of Applied Physics, V. 90, No. 3, 2001, pp. 1192-1200.

10. Balooch, G.; Marshall, G. W.; Marshall, S. H.; Warren, O. L.; Asif, S. A. S.; and Balooch, M., “Evaluation of a New Modulus Mapping Technique to Investigate Microstructural Features of Human Teeth,” Journal of Biomechanics, V. 37, No. 8, 2004, pp. 1223-1232.

11. Uskokovic, P. S.; Tang, C. Y.; Tsui, C. P.; Ignjatovic, N.; and Uskokovic, D. P., “Micromechanical Properties of Ahydroxyapatite/Poly-L-Lactidebiocomposite Using Nanoindentation and Modulus Mapping,” Journal of the European Ceramic Society, V. 27, No. 2-3, 2007, pp. 1559-1564.

12. Young, T. J.; Monclus, M. A.; Burnett, T. L.; Broughton, W. R.; Ogin, S. L.; and Smith, P. A., “The Use of the PeakForceTM Quantitative Nanomechanical Mapping AFM-Based Method for High-Resolution Young’s Modulus Measurement of Polymers,” Measurement Science & Technology, V. 22, No. 12, 2011, doi: 10.1088/0957-0233/22/12/125703

13. Pittenger, B.; Erina, N.; and Su, C., “Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM,” Application Note Veeco Instruments Inc., http://www.bruker-axs.com/uploads/AN128.pdf.

14. Vanlandingham, M. R.; McKnight, S. H.; Palmese, G. R.; Elings, J. R.; Huang, X.; Bogetti, T. A.; Eduljee, R. F.; and Gillespie Jr., J. W., “Nanoscale Indentation of Polymer Systems Using the Atomic Force Microscope,” The Journal of Adhesion, V. 64, No. 1-4, 1997, pp. 31-59.

15. Sahin, O., and Erina, N., “High-Resolution and Large Dynamic Range Nanomechanical Mapping in Tapping-Mode Atomic Force Microscopy,” Nanotechnology, V. 19, No. 44, 2008, doi: 10.1088/0957-4484/19/44/445717

16. Xiao, J. Z.; Li, W. G.; Corr, D. J.; and Shah, S. P., “Simulation Study on the Stress Distribution in Modeled Recycled Aggregate Concrete under Uniaxial Compression,” Journal of Materials in Civil Engineering, ASCE, V. 25, No. 4, 2013, pp. 504-518.

17. Xiao, J. Z.; Li, W. G.; Corr, D. J.; and Shah, S. P., “Effects of Interfacial Transition Zones on the Stress-Strain Behavior of Modeled Recycled Aggregate Concrete,” Cement and Concrete Research, V. 52, 2013, pp. 82-99.

18. Lee, J. W., and Duh, J. G., “Nanomechanical Properties Evaluation of Chromium Nitride Films by Nanoindentation and Nanowear Techniques,” Surface and Coatings Technology, V. 188-189, 2004, pp. 655-661.

19. Oliver, W. C., and Pharr, G. M., “Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, V. 7, No. 6, 1992, pp. 1564-1583.

20. Ulm, F. J.; Vandamme, M.; Bobko, C.; and Ortega, J. A., “Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale,” Journal of the American Ceramic Society, V. 90, No. 9, 2007, pp. 2677-2692.

21. Xiao, J. Z.; Li, W. G.; Sun, Z. H.; Lange, D. A.; and Shah, S. P., “Properties of Interfacial Transition Zones in Recycled Aggregate Concrete Tested by Nanoindentation,” Cement and Concrete Composites, V. 37, 2013, pp. 276-292.

22. Mondal, P.; Shah, S. P.; and Marks, L. P., “Nanomechanical Properties of Interfacial Transition Zone in Concrete,” Nanotechnology in Construction 3: Proceedings of the NICOM3, 2009, pp. 315-320.

23. Wang, X. H.; Jacobsen, S.; He, J. Y.; Zhang, Z. L.; Lee, S. F.; and Lein, H. L., “Application of Nanoindentation Testing to Study the Interfacial Transition Zone in Steel Fiber Reinforced Mortar,” Cement and Concrete Research, V. 39, No. 8, 2009, pp. 701-715.

24. Li, W. G.; Xiao, J. Z.; Sun, Z. H.; Kawashima, S.; and Shah, S. P., “Interfacial Transition Zones in Recycled Aggregate Concrete with Different Mixing Approaches,” Construction and Building Materials, V. 35, 2012, pp. 1045-1055.

25. Lee, K. M., and Park, J. H., “A Numerical Model for Elastic Modulus of Concrete Considering Interfacial Transition Zone,” Cement and Concrete Research, V. 38, No. 3, 2008, pp. 396-402.

26. Rabe, U.; Janser, K.; and Arnold, W., “Vibrations of Free and Surface-Coupled Atomic Force Microscope Cantilevers: Theory and Experiment,” The Review of Scientific Instruments, V. 67, No. 9, 1996, pp. 3281-3293.

27. Sahin, O.; Magonov, S.; Su, C.; Quate, C. F.; and Solgaard, O., “An Atomic Force Microscope Tip Designed to Measure Time-Varying Nanomechanical Forces,” Nature Nanotechnology, V. 2, 2007, pp. 507-514.

28. Derjaguin, B. V.; Muller, V. M.; and Toporov, Y. P., “Effect of Contact Deformations on the Adhesion of Particles,” Journal of Colloid and Interface Science, V. 53, No. 2, 1975, pp. 314-326.

29. Trtik, P.; Dual, J.; Muench, B.; and Holzer, L., “Limitation in Obtainable Surface Roughness of Hardened Cement Paste: Virtual Topographic Experiment Based on Focused Ion Beam Nanotomography Datasets,” Journal of Microscopy, V. 6, No. 4, 2001, pp. 311-316.

30. Miller, M.; Bobko, C.; Vandamme, M.; and Ulm, F. J., “Surface Roughness Criteria for Cement Paste Nanoindentation,” Cement and Concrete Research, V. 38, No. 4, 2008, pp. 467-476.

31. Jennings, H. M.; Thomas, J. J.; Gevrenov, J. S.; Constantinides, G.; and Ulm, F. J., “A Multi-Technique Investigation of the Nanoporosity of Cement Paste,” Cement and Concrete Research, V. 37, No. 3, 2007, pp. 329-336.

32. Vandamme, M.; Ulm, F. J.; and Fonollosa, P., “Nanogranular Packing of C-S-H at Substochiometric Conditions,” Cement and Concrete Research, V. 40, No. 1, 2010, pp. 14-26.

33. Alizadeh, R.; Beaudoin, J. J.; and Raki, L. R., “Mechanical Properties of Calcium Silicate Hydrates,” Materials and Structures, V. 44, No. 1, 2011, pp. 13-28.

34. Kim, J. H.; Balogun, O.; and Shah, S. P., “Atomic Force Acoustic Microscopy to Measure Nanoscale Mechanical Properties of Cement Pastes,” Journal of the Transportation Research Board, V. 2141, 2010, pp. 102-108.

35. Masoero, E.; Del Gado, E.; Pellenq, R. J.-M.; Ulm, F. J.; and Yip, S., “Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing,” Physical Review Letters, V. 109, No. 15, 2012, doi: 10.1103/PhysRevLett.109.155503

36. Brehm, D., “Size Diversity in Cement Nanoparticles Optimizes Packing Density to Give Concrete Its Strength,” Department of Civil and Environmental Engineering (CEE), Massachusetts Institute of Technology, Nov. 8, 2012, http://cee.mit.edu/news/releases/2012/cement-particle-packing-density.

37. Pellenq, R. J. M.; Kushima, A.; Shahsavari, R.; Van Vliet, K. J.; Buehler, M. J.; Yip, S.; and Ulm, F. J., “A Realistic Molecular Model of Cement Hydrates,” Proceedings of the National Academy of Sciences of the United States of America, V. 106, No. 38, 2009, pp. 16102-16107.

38. Allen, A. J.; Thomas, J. J.; and Jennings, H. M., “Composition and Density of Nanoscale Calcium-Silicate-Hydrate in Cement,” Nature Materials, V. 6, 2007, pp. 311-316.

39. Fonseca, P. C.; Jennings, H. M.; and Andrade, J. E., “A Nanoscale Numerical Model of Calcium Silicate Hydrate,” Mechanics of Materials, V. 43, No. 8, 2011, pp. 408-419.

40. DeJong, M. J., and Ulm, F.-J., “The Nanogranular Behavior of C-S-H at Elevated Temperatures (up to 700°C),” Cement and Concrete Research, V. 37, No. 1, 2007, pp. 1-12.

41. Constantinides, G., and Ulm, F.-J., “The Nanogranular Nature of C-S-H,” Journal of the Mechanics and Physics of Solids, V. 55, No. 1, 2007, pp. 64-90.


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer