Cement-Cellulose Excelsior Composites: Accounting for Moisture

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Cement-Cellulose Excelsior Composites: Accounting for Moisture

Author(s): Naveen Krishnan, O. Burkan Isgor, and W. Jason Weiss

Publication: Materials Journal

Volume: 123

Issue: 1

Appears on pages(s): 51-62

Keywords: absorption; cellulose; cellulose-cement composites (C3); centrifuge; desorption isotherm; isothermal calorimetry; moisture content

DOI: 10.14359/51749250

Date: 1/1/2026

Abstract:
Cellulose excelsior (CE), sometimes referred to as wood wool, is a shredded wood product with a strand thickness of 0.12 to 0.64 mm, a width that is up to three times the thickness, and a straw-like consistency. CE can be combined with cementitious materials to form cellulose-cement composite (C3) materials. The production of C3 materials requires accurate methods to quantify the moisture in the CE. This paper describes a methodology to obtain the surface-dry state repeatably by using a centrifuge and an approach to control water content, which can be used to provide consistency in C3 production. The mixture water absorbed by the CE can be estimated from the desorption isotherm when the relative humidity of the CE is greater than 80%. Isothermal calorimetry was used to confirm the accuracy of using the desorption model to quantify the water uptake.

Related References:

1. Kochova, K.; Schollbach, K.; and Brouwers, H. J. H., “Use of Alternative Fibres in Wood Wool Cement Boards and Their Influence on Cement Hydration,” Proceedings of the 19th International Conference on Building Materials (Ibausil 2015), H.-B. Fischer, C. Boden, and M. Neugebauer, eds., Weimar, Germany, Sept. 2015, pp. 1375-1382.

2. Berger, F.; Gauvin, F.; and Brouwers, H. J. H., “The Recycling Potential of Wood Waste into Wood-Wool/Cement Composite,” Construction and Building Materials, V. 260, Nov. 2020, Article No. 119786. doi: 10.1016/j.conbuildmat.2020.119786

3. Ashori, A.; Tabarsa, T.; Azizi, K.; and Mirzabeygi, R., “Wood–Wool Cement Board Using Mixture of Eucalypt and Poplar,” Industrial Crops and Products, V. 34, No. 1, July 2011, pp. 1146-1149. doi: 10.1016/j.indcrop.2011.03.033

4. ARPA-E, “Cellulose Cement Composite (C3) for Residential Construction,” Advanced Research Projects Agency-Energy, Washington, DC, 2024, https://arpa-e.energy.gov/programs-and-initiatives/search-all-projects/cellulose-cement-composite-c3-residential-construction. (last accessed Nov. 24, 2025)

5. Winchester, N., and Reilly, J. M., “The Economic and Emissions Benefits of Engineered Wood Products in a Low-Carbon Future,” Energy Economics, V. 85, Jan. 2020, Article No. 104596. doi: 10.1016/j.eneco.2019.104596

6. Martin, A. R.; Doraisami, M.; and Thomas, S. C., “Global Patterns in Wood Carbon Concentration Across the World’s Trees and Forests,” Nature Geoscience, V. 11, No. 12, Dec. 2018, pp. 915-920. doi: 10.1038/s41561-018-0246-x

7. Amiri, A.; Ottelin, J.; Sorvari, J.; and Junnila, S., “Cities as Carbon Sinks—Classification of Wooden Buildings,” Environmental Research Letters, V. 15, No. 9, Sept. 2020, Article No. 094076. doi: 10.1088/1748-9326/aba134

8. Takano, A.; Hafner, A.; Linkosalmi, L.; Ott, S.; Hughes, M.; and Winter, S., “Life Cycle Assessment of Wood Construction According to the Normative Standards,” European Journal of Wood and Wood Products, V. 73, No. 3, May 2015, pp. 299-312. doi: 10.1007/s00107-015-0890-4

9. Lucero, C.; Weiss, W. J.; and Isgor, O. B., “Carbonation Potential for Concrete Using Thermodynamic Modeling for Concrete Sustainability Calculations,” Transportation Research Record: Journal of the Transportation Research Board, V. 2679, No. 8, Aug. 2025, pp. 21-33. doi: 10.1177/03611981251331008

10. El-Hassan, H.; Shao, Y.; and Ghouleh, Z., “Effect of Initial Curing on Carbonation of Lightweight Concrete Masonry Units,” ACI Materials Journal, V. 110, No. 4, July-Aug. 2013, pp. 441-450.

11. Sahu, S., and Meininger, R. C., “Performance of CO2-Reducing Cement Based on Calcium Silicates,” Proceedings of the 15th International Congress on the Chemistry of Cement (ICCC 2019), Prague, Czech Republic, Sept. 2019, 11 pp.

12. Villani, C.; Spragg, R.; Tokpatayeva, R.; Olek, J.; and Weiss, W. J., “Characterizing the Pore Structure of Carbonated Natural Wollastonite,” Proceedings of the 4th International Conference on the Durability of Concrete Structures (ICDCS), J. Olek and J. Weiss, eds., Purdue University, West Lafayette, IN, July 2014, pp. 262-269.

13. Caprai, V.; Gauvin, F.; Schollbach, K.; and Brouwers, H. J. H., “Influence of the Spruce Strands Hygroscopic Behaviour on the Performances of Wood-Cement Composites,” Construction and Building Materials, V. 166, Mar. 2018, pp. 522-530. doi: 10.1016/j.conbuildmat.2018.01.162

14. Chatterjee, P. K., and Gupta, B. S., “Porous Structure and Liquid Flow Models,” Textile Science and Technology, V. 13, P. K. Chatterjee and B. S. Gupta, eds., Elsevier Science B.V., Amsterdam, the Netherlands, 2002, pp. 1-55.

15. Gasser, H. P.; Krause, C.; and Prevost, T., “Water Absorption of Cellulosic Insulating Materials Used in Power Transformers,” 9th IEEE International Conference on Solid Dielectrics (ICSD 2007), Winchester, UK, July 2007, pp. 289-293.

16. French, A. D., “Glucose, Not Cellobiose, Is the Repeating Unit of Cellulose and Why That Is Important,” Cellulose, V. 24, No. 11, Nov. 2017, pp. 4605-4609. doi: 10.1007/s10570-017-1450-3

17. Wyman, C. E.; Decker, S. R.; Himmel, M. E.; Brady, J. W.; Skopec, C. E.; and Viikari, L., “Hydrolysis of Cellulose and Hemicellulose,” Polysaccharides: Structural Diversity and Functional Versatility, second edition, S. Dumitriu, ed., CRC Press, Boca Raton, FL, 2005, pp. 1023-1062.

18. Kulasinski, K.; Guyer, R.; Derome, D.; and Carmeliet, J., “Water Adsorption in Wood Microfibril-Hemicellulose System: Role of the Crystalline–Amorphous Interface,” Biomacromolecules, V. 16, No. 9, Sept. 2015, pp. 2972-2978. doi: 10.1021/acs.biomac.5b00878

19. Chen, M.; Zhang, C.; Shomali, A.; Coasne, B.; Carmeliet, J.; and Derome, D., “Wood–Moisture Relationships Studied with Molecular Simulations: Methodological Guidelines,” Forests, V. 10, No. 8, Aug. 2019, Article No. 628. doi: 10.3390/f10080628

20. Bentz, D. P., and Weiss, W. J., “Internal Curing: A 2010 State-of-the-Art Review,” Report NISTIR 7765, U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, Feb. 2011, 94 pp.

21. Tabarsa, T., and Ashori, A., “Dimensional Stability and Water Uptake Properties of Cement-Bonded Wood Composites,” Journal of Polymers and the Environment, V. 19, No. 2, June 2011, pp. 518-521. doi: 10.1007/s10924-011-0295-3

22. ASTM C150/C150M-24, “Standard Specification for Portland Cement,”ASTM International, West Conshohocken, PA, 2024, 9 pp.

23. Le Chatelier, M. H., “Sur les Changements de Volume Qui Accompagnent le Durcissement des Ciments,” Bulletin de la Société d’Encouragement pour l’Industrie Nationale, V. 99, No. 4, Jan. 1900, pp. 54-57.

24. Miller, A.; Barrett, T.; Zander, A.; and Weiss, W., “Using a Centrifuge to Determine Moisture Properties of Lightweight Fine Aggregate for Use in Internal Curing,” Advances in Civil Engineering Materials, V. 3, No. 1, 2014, pp. 142-157. doi: 10.1520/ACEM20130111

25. Miller, A. E. IV; Spragg, R.; Antico, F. C.; Ashraf, W.; Barrett, T.; Behnood, A.; Bu, Y.; Chiu, Y.; Desta, B.; Farnam, Y.; Jeong, H.; Jones, W.; Lucero, C.; Luo, D.; Nickel, C.; Panchamatia, P.; Pin, K.; Qiang, S.; Qiao, C.; Shagerdi, H.; Tokpatayeva, R.; Villani, C.; Wiese, A.; Woodard, S.; and Weiss, W. J., “Determining the Moisture Content of Pre-Wetted Lightweight Aggregate: Assessing the Variability of the Paper Towel and Centrifuge Methods,” Proceedings of the 4th International Conference on the Durability of Concrete Structures (ICDCS), J. Olek and J. Weiss, eds., Purdue University, West Lafayette, IN, July 2014, pp. 312-316.

26. Miller, A. E., “Using a Centrifuge for Quality Control of Pre-Wetted Lightweight Aggregate in Internally Cured Concrete,” master’s thesis, Purdue University, West Lafayette, IN, 2014, 142 pp.

27. Amini, E.; Tajvidi, M.; Bousfield, D. W.; Gardner, D. J.; and Shaler, S. M., “Dewatering Behavior of a Wood-Cellulose Nanofibril Particulate System,” Scientific Reports, V. 9, No. 1, 2019, Article No. 14584. doi: 10.1038/s41598-019-51177-x

28. Cheng, Q.; Wang, J.; McNeel, J. F.; and Jacobson, P. M., “Water Retention Value Measurements of Cellulosic Materials Using a Centrifuge Technique,” BioResources, V. 5, No. 3, Aug. 2010, pp. 1945-1954.

29. ASTM D4442-20, “Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials,” ASTM International, West Conshohocken, PA, 2020, 5 pp.

30. ASTM C128-22, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” ASTM International, West Conshohocken, PA, 2022, 6 pp.

31. Castro, J.; Lura, P.; Rajabipour, F.; Henkensiefken, R.; and Weiss, J., “Internal Curing: Discussion of the Role of Pore Solution on Relative Humidity Measurements and Desorption of Lightweight Aggregate (LWA),” Advances in the Material Science of Concrete, SP-270, J. H. Ideker and A. Radlinska, eds., American Concrete Institute, Farmington Hills, MI, 2010, pp. 89-100.

32. ASTM E104-20a, “Standard Practice for Maintaining Constant Relative Humidity by Means of Aqueous Solutions,” ASTM International, West Conshohocken, PA, 2020, 5 pp.

33. Lura, P.; Winnefeld, F.; and Klemm, S., “Simultaneous Measurements of Heat of Hydration and Chemical Shrinkage on Hardening Cement Pastes,” Journal of Thermal Analysis and Calorimetry, V. 101, No. 3, Sept. 2010, pp. 925-932. doi: 10.1007/s10973-009-0586-2

34. Johansen, N. A.; Millard, M. J.; Mezencevova, A.; Garas, V. Y.; and Kurtis, K. E., “New Method for Determination of Absorption Capacity of Internal Curing Agents,” Cement and Concrete Research, V. 39, No. 1, Jan. 2009, pp. 65-68. doi: 10.1016/j.cemconres.2008.10.004

35. Bharadwaj, K.; Chopperla, K. S. T.; Choudhary, A.; Glosser, D.; Ghantous, R. M.; Vasudevan, G. D.; Ideker, J. H.; Isgor, O. B.; Trejo, D.; and Weiss, W. J., “CALTRANS: Impact of the Use of Portland-Limestone Cement on Concrete Performance as Plain or Reinforced Material—Final Report,” Oregon State University, Corvallis, OR, 2021, 320 pp.

36. Castro, J.; De la Varga, I.; and Weiss, J., “Using Isothermal Calorimetry to Assess the Water Absorbed by Fine LWA during Mixing,” Journal of Materials in Civil Engineering, ASCE, V. 24, No. 8, Aug. 2012, pp. 996-1005. doi: 10.1061/(ASCE)MT.1943-5533.0000496

37. Stamm, A. J., “Variations of Maximum Tracheid and Pit Pore Dimensions from Pith to Bark for Ponderosa Pine and Redwood Before and After Drying Determined by Liquid Displacement,” Wood Science and Technology, V. 4, No. 2, June 1970, pp. 81-96. doi: 10.1007/BF00365295

38. Kellogg, R. M., and Wangaard, F. F., “Variation in the Cell-Wall Density of Wood,” Wood and Fiber Science, V. 1, 1969, pp. 180-204.

39. Ismail, M.; Yahaya, N.; Bakar, A. A.; and Noor, N. M., “Cultivation of Sulphate Reducing Bacteria in Different Media,” Malaysian Journal of Civil Engineering, V. 26, No. 3, 2014, pp. 456-465.

40. Engelund, E. T.; Thygesen, L. G.; Svensson, S.; and Hill, C. A. S., “A Critical Discussion of the Physics of Wood–Water Interactions,” Wood Science and Technology, V. 47, No. 1, Jan. 2013, pp. 141-161. doi: 10.1007/s00226-012-0514-7

41. Mualem, Y., “A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media,” Water Resources Research, V. 12, No. 3, June 1976, pp. 513-522. doi: 10.1029/WR012i003p00513

42. Van Genuchten, M. T., and Nielsen, D. R., “On Describing and Predicting the Hydraulic Properties of Unsaturated Soils,” Annales Geophysicae, V. 3, No. 5, 1985, pp. 615-628.

43. Thygesen, L. G.; Engelund, E. T.; and Hoffmeyer, P., “Water Sorption in Wood and Modified Wood at High Values of Relative Humidity. Part I: Results for Untreated, Acetylated, and Furfurylated Norway Spruce,” Holzforschung: Wood Research and Technology, V. 64, No. 3. Feb. 2010, pp. 315-323.

44. Skaar, C., Wood-Water Relations, Springer-Verlag Berlin Heidelberg, Berlin, Germany, 1988, 283 pp.

45. Engelund, E. T.; Thygesen, L. G.; and Hoffmeyer, P., “Water Sorption in Wood and Modified Wood at High Values of Relative Humidity. Part 2: Appendix. Theoretical Assessment of the Amount of Capillary Water in Wood Microvoids,” Holzforschung: Wood Research and Technology, V. 64, No. 3. Feb. 2010, pp. 325-330.

46. Zelinka, S. L.; Lambrecht, M. J.; Glass, S. V.; Wiedenhoeft, A. C.; and Yelle, D. J., “Examination of Water Phase Transitions in Loblolly Pine and Cell Wall Components by Differential Scanning Calorimetry,” Thermochimica Acta, V. 533, Apr. 2012, pp. 39-45. doi: 10.1016/j.tca.2012.01.015

47. Fredlund, D. G., and Rahardjo, H., Soil Mechanics for Unsaturated Soils, John Wiley & Sons, Inc., Hoboken, NJ, 1993, 544 pp.

48. Palin, M. A., and Petty, J. A., “Permeability to Water of the Wood Cell Wall and Its Variation with Temperature,” Wood Science and Technology, V. 17, No. 3, Sept. 1983, pp. 187-193. doi: 10.1007/BF00372316

49. Županović, P.; Brumen, M.; Fajmut, A.; Kuić, D.; and Juretić, D., “Osmosis at Constant Volume and Water Uptake in Tall Trees,” arXiv, 2009, 16 pp.

50. Kulasinski, K.; Derome, D.; and Carmeliet, J., “Impact of Hydration on the Micromechanical Properties of the Polymer Composite Structure of Wood Investigated with Atomistic Simulations,” Journal of the Mechanics and Physics of Solids, V. 103, June 2017, pp. 221-235. doi: 10.1016/j.jmps.2017.03.016

51. Savastano, H. Jr.; Warden, P. G.; and Coutts, R. S. P., “Microstructure and Mechanical Properties of Waste Fibre–Cement Composites,” Cement and Concrete Composites, V. 27, No. 5, May 2005, pp. 583-592. doi: 10.1016/j.cemconcomp.2004.09.009

52. Tonoli, G. H. D.; Rodrigues Filho, U. P.; Savastano, H. Jr.; Bras, J.; Belgacem, M. N.; and Lahr, F. A. R., “Cellulose Modified Fibres in Cement Based Composites,” Composites Part A: Applied Science and Manufacturing, V. 40, No. 12, Dec. 2009, pp. 2046-2053. doi: 10.1016/j.compositesa.2009.09.016


ALSO AVAILABLE IN:

Electronic Materials Journal