End-Zone Reinforcing Schemes for Prestressed Concrete Bulb-Tee Girders (Prepublished)

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: End-Zone Reinforcing Schemes for Prestressed Concrete Bulb-Tee Girders (Prepublished)

Author(s): Yail J. Kim and Thi Ha

Publication: Structural Journal

Volume:

Issue:

Appears on pages(s):

Keywords: end zones; failure; prestressed concrete; reinforcing schemes

DOI: 10.14359/51749103

Date: 7/31/2025

Abstract:
This paper presents the effectiveness of various reinforcing schemes in the end zones of prestressed concrete bulb-tee girders. The default girder, provided by a local transportation agency, includes C-bars and spirals intended to control cracking, and is analyzed using three-dimensional finite element analysis. The formulated models are used to evaluate the breadth of end zones, strain responses, cracking patterns, damage amounts, and splitting forces, depending upon the configuration of the end-zone reinforcement. The number of C-bars is not influential in developing strand stress along the girder. The maximum principal stresses exceed the conventional limit within h/4 of the girder end, where h is the girder depth; however, the 3h/4 limit adequately encompasses the stress profiles, particularly in the web of the girder. The maximum tensile strain in the concrete varies with the elevation of the girder, and the inclined strands cause local compression in the C-bars, while spiral strains are independent of the number of bars. By positioning the C-bars, the vertical strain of the concrete decreases by more than 15.9%, which can minimize crack formation. Whereas the short-term crack width of the girder may not be an immediate concern, its long-term width is found to surpass the established limit of 0.18 mm (0.007 in.). In this regard, multiple C-bars should be placed to address concerns about undesirable cracking. The splitting cracks in the girder, resulting from the strand angles and eccentricities, can be properly predicted by published specifications within the range of 0.2h to 0.7h, beyond which remarkable discrepancies are observed in comparison with a refined approach. From a practical perspective, two to three No. 6 or No. 7 C-bars spaced 150 mm (6 in.) apart are recommended in the end zones alongside welded wire fabric.


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer