Uncertainty of Models for Modulus of Elasticity of Concrete in Colombian Code

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Uncertainty of Models for Modulus of Elasticity of Concrete in Colombian Code

Author(s): Albert R. Ortiz and Julian Carrillo

Publication: Materials Journal

Volume: 122

Issue: 2

Appears on pages(s): 3-14

Keywords: aggregates; Bayesian model updating; modulus of elasticity; uncertainty quantification

DOI: 10.14359/51745620

Date: 3/1/2025

Abstract:
The modulus of elasticity of concrete is typically estimated usingnumerical models that consider factors such as the compressivestrength of the concrete, aggregate properties, unit weightof concrete, and water-cement ratio. The most-used equationdepends on the relationship between the compressive strength ofthe concrete and its modulus of elasticity. However, this simplifiedformula may provide an inaccurate estimate of the modulusof elasticity of concrete containing different types of aggregatesunder varying loading conditions. More sophisticated models canbe used to accurately estimate the modulus of elasticity for specificapplications, such as expressions involving the unit weight ofconcrete. This study presents a probabilistic update to the expressions used for estimating the modulus of elasticity of concretebased on an extensive database of over 2600 experimental testsfrom 20 different studies. Bayesian inference was used to updatethe currently proposed models, allowing for the determination ofthe expressions representing the trends of the current databasealong with their associated uncertainties. The updated expressionswere formulated considering either the compressive strength ofconcrete or both the compressive strength and the unit weight asinput parameters. Expressions for estimating the modulus of elasticity, considering the aggregate’s origin, were also updated. Thiscomprehensive approach enhances the accuracy and reliability ofpredicting the modulus of elasticity, providing valuable insightsand tools for concrete structures’ design and structural reliabilityanalysis.

Related References:

1. Puttbach, C.; Prinz, G. S.; and Murray, C. D., “A Detailed Review of Equations for Estimating Elastic Modulus in Specialty Concretes,” Journal of Materials in Civil Engineering, ASCE, V. 35, No. 6, 2023, p. 03123001. doi: 10.1061/JMCEE7.MTENG-14699

2. Sun, R. W., and Fanourakis, G. C., “An Assessment of Factors Affecting the Elastic Modulus of Concrete,” Structural Concrete, V. 23, No. 1, 2022, pp. 593-603. doi: 10.1002/suco.202000553

3. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.

4. EN 1998-1:2019, “Eurocode 8: Design of Structures for Earthquake Resistance – Part 1: General Rules, Seismic Actions and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 2019.

5. NSR-10, “Reglamento Colombiano de Construcción Sismo Resistente,” Asociación Colombiana de Ingeniería Sísmica, Bogotá, Colombia, 2010.

6. Pauw, A., “Static Modulus of Elasticity of Concrete as Affected by Density,” ACI Journal Proceedings, V. 57, No. 12, Dec. 1960, pp. 679-688.

7. Harsh, S.; Shen, Z.; and Darwin, D., “Strain-Rate Sensitive Behavior of Cement Paste and Mortar in Compression,” ACI Materials Journal, V. 87, No. 5, Sept.-Oct. 1990, pp. 508-516.

8. Klink, S. A., “Cement and the Elastic Constants of Concrete,” Cement and Concrete Research, V. 22, No. 5, 1992, pp. 761-768. doi: 10.1016/0008-8846(92)90099-H

9. Lydon, F. D., and Balendran, R. V., “Some Observations on Elastic Properties of Plain Concrete,” Cement and Concrete Research, V. 16, No. 3, 1986, pp. 314-324. doi: 10.1016/0008-8846(86)90106-7

10. Popovics, S., “Verification of Relationships between Mechanical Properties of Concrete-Like Materials,” Materials and Structures, V. 8, No. 3, 1975, pp. 183-191.

11. Kameswara Rao, C. V. S.; Swamy, R. N.; and Mangat, P. S., “Mechanical Behaviour of Concrete as a Composite Material,” Materials and Structures, V. 7, No. 4, 1974, pp. 265-271.

12. Korkmaz, K. A.; Tekeli, H.; and Demir, F., “Determination of Elastic Moduli Effects on Storey-Drifts by Fuzzy Logic Algorithm,” Civil Engineering and Environmental Systems, V. 26, No. 3, 2009, pp. 249-262. doi: 10.1080/10286600802080748

13. Ortiz, A. R.; Caicedo, J. M.; and Rizos, D., “Finite Element Model of High Strength Reduced Modulus High Performance Concrete,” ASME/IEEE Joint Rail Conference Proceedings, Columbia, SC, 2016, 6 pp.

14. Farias, S., “Recopilación de la Información de los Ensayos sobre el Módulo de Elasticidad del Concreto en Diferentes Ciudades del País,” MSc thesis, Universidad de los Andes, Bogotá, Colombia, 1994.

15. Tabsh, S. W., “Comparison between Reinforced Concrete Designs Based on the ACI 318 and BS 8110 Codes,” Structural Engineering and Mechanics, V. 48, No. 4, 2013, pp. 467-477. doi: 10.12989/sem.2013.48.4.467

16. Beck, J. L., and Katafygiotis, L. S., “Updating Models and Their Uncertainties. I: Bayesian Statistical Framework,” Journal of Engineering Mechanics, ASCE, V. 124, No. 4, 1998, pp. 455-461. doi: 10.1061/(ASCE)0733-9399(1998)124:4(455)

17. Jaynes, E. T., Probability Theory: The Logic of Science, Cambridge University Press, Cambridge, UK, 2003.

18. Bayes, T., and Hume, D., “Bayes’s Theorem,” Proceedings of the British Academy, V. 113, 1763, pp. 91-109.

19. Joyce, J., “Bayes’ Theorem,” Stanford Encyclopedia of Philosophy, 2003, https://plato.stanford.edu/entries/bayes-theorem/. (last accessed Feb. 17, 2025)

20. Denison, D. G. T.; Holmes, C. C.; Mallick, B. K.; and Smith, A. F. M., Bayesian Methods for Nonlinear Classification and Regression, John Wiley & Sons, Inc., New York, 2002.

21. MacLehose, R. F., and Hamra, G. B., “Applications of Bayesian Methods to Epidemiologic Research,” Current Epidemiology Reports, V. 1, No. 3, 2014, pp. 103-109. doi: 10.1007/s40471-014-0019-z

22. Ma, Z.; Lai, Y.; Kleijn, W. B.; Song, Y.-Z.; Wang, L.; and Guo, J., “Variational Bayesian Learning for Dirichlet Process Mixture of Inverted Dirichlet Distributions in Non-Gaussian Image Feature Modeling,” IEEE Transactions on Neural Networks and Learning Systems, V. 30, No. 2, 2019, pp. 449-463. doi: 10.1109/TNNLS.2018.2844399

23. Zhang, Y.-M.; Wang, H.; Bai, Y.; Mao, J.-X.; and Xu, Y.-C., “Bayesian Dynamic Regression for Reconstructing Missing Data in Structural Health Monitoring,” Structural Health Monitoring, V. 21, No. 5, 2022, pp. 2097-2115. doi: 10.1177/14759217211053779

24. Zhang, E. L.; Feissel, P.; and Antoni, J., “A Comprehensive Bayesian Approach for Model Updating and Quantification of Modeling Errors,” Probabilistic Engineering Mechanics, V. 26, No. 4, 2011, pp. 550-560. doi: 10.1016/j.probengmech.2011.07.001

25. Argyris, C.; Papadimitriou, C.; Panetsos, P.; and Tsopelas, P., “Bayesian Model-Updating Using Features of Modal Data: Application to the Metsovo Bridge,” Journal of Sensor and Actuator Networks, V. 9, No. 2, 2020, Article No. 27. doi: 10.3390/jsan9020027

26. Cajas, F. A., and Hernández, L. M., “Evaluación del Módulo de Elasticidad Estático Secante del Hormigón,” thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 1987.

27. Roa, O. A., “Módulo Secante de Elasticidad del Concreto,” MSc thesis, Universidad de los Andes, Bogotá, Colombia, 1991.

28. Farias, S. L., “Aproximación a la Obtención del Módulo de Elasticidad del Concreto,” MSc thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1992.

29. Moya, S. L. C., “Evaluación del Módulo de Elasticidad del Concreto para la Ciudad de Cali,” thesis, Universidad del Valle, Cali, Colombia, 1993.

30. Vásquez, C. H. C., and Barbosa, I. D., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Villavicencio,” thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1993.

31. Valencia, R., and Murcia, L. C., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Cali,” thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1993.

32. Padrón, A. M., and de Jesús Gonzalez, J., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Cartagena,” thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1993.

33. Padilla José Antonio, A. L.; Cortés, A.; Fernando, C.; and Polo, A. J. F., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Bogotá (Segunda Parte),” thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1993.

34. Campos, A. P. A., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Ibagué,” PhD thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1993.

35. Salas, A., and Cabrales, E., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Montería,” PhD thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1993.

36. Valdez, J. L. R. C. C. E. B., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Barranquilla,” MSc thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1994.

37. Cuervo, G. A. S. A. A. S., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Tunja,” MSc thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1994.

38. Albán, R. E., and Serrano, M. F., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Bucaramanga,” MSc thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1994.

39. Silva, J. E. V. M. F., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Neiva,” MSc thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1994.

40. Pimienta, A. O. M., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en la Ciudad de Valledupar,” MSc thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1994.

41. Barreto, E. D., “Ciclo Investigativo para la Obtención del Módulo de Elasticidad del Concreto en el Guamo,” MSc thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 1994.

42. Montejo, L. A., and López, H., “Determinación de las Propiedades Mecánicas del Concreto Endurecido Usados en el Diseño Estructural para los Concretos Elaborados en la Ciudad de Cali con Materiales Elaborados de la Región,” MSc thesis, Universidad del Valle, Cali, Colombia, 2001.

43. Luna, D. A. O., and Sandino, C., “Determinación de las Propiedades Mecánicas del Concreto Endurecido Usados en el Diseño Estructural para los Concretos Elaborados en la Ciudad de Cali con Materiales Elaborados de la Región,” thesis, Universidad del Valle, Cali, Colombia, 2001.

44. La Rosa, H., and Dede, D. D., “Determinación del Módulo de Elasticidad para Concretos Estructurales Utilizados en la Ciudad de Santa Marta,” thesis, Universidad del Magdalena, Santa Marta, Colombia, 2006.

45. Barragán, E. A. G. B. M. F. C., “Comparación de los Módulos de Elasticidad de Concreto Normal, con el Ensayo de Compresión y el Ensayo de Flexió,” thesis, Universidad Pontificia Bolivariana, Medellín, Colombia, 2012.

46. Murcia, R. A. B., “Obtención del Módulo de Elasticidad y la Relación de Poisson, para Concretos de 21 y 28 MPa en Seis Diferentes Obras Ubicadas en la Zona Occidental de Bogotá,” thesis, Universidad La Gran Colombia, Bogotá, Colombia, 2015.

47. Pineda, J. M. O., “Determinación de la Relación de Poisson y Módulo de Elasticidad para Concretos de 21 y 28 Megapascales en Concretos de la Ciudad de Villavicencio,” thesis, Universidad La Gran Colombia, Bogotá, Colombia, 2016.

48. Abril-Pla, O.; Andreani, V.; Carroll, C.; Dong, L.; Fonnesbeck, C. J.; Kochurov, M.; Kumar, R.; Lao, J.; Luhmann, C. C.; Martin, O. A.; Osthege, M.; Vieira, R.; Wiecki, T.; and Zinkov, R., “PyMC: A Modern, and Comprehensive Probabilistic Programming Framework in Python,” PeerJ Computer Science, V. 9, 2023, Article No. e1516. doi: 10.7717/peerj-cs.1516


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer