Mechanical Behavior of Textile Concrete under Uniaxial Tensile Tests: Experimental Study

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Mechanical Behavior of Textile Concrete under Uniaxial Tensile Tests: Experimental Study

Author(s): J. Rizzo, E. S. Bastos, L. A. Reginato, P. M. Lazzari, and L. C. P. da Silva Filho

Publication: Materials Journal

Volume: 122

Issue: 2

Appears on pages(s): 59-72

Keywords: carbon textile; glass textile; mechanical behavior; textile concrete

DOI: 10.14359/51745606

Date: 3/1/2025

Abstract:
Through uniaxial tensile tests, the mechanical behavior of bone shaped concrete reinforced with glass textile and carbon textile impregnated with epoxy resin was verified using a stress-strain response curve. It was observed that elements reinforced with glass fabric presented different mechanical responses depending on the textile reinforcement rate. In samples with two layers of glass fabric, three stages were formed, as predicted in the literature. In the specimens reinforced with only one layer, the structural incapacity of the element was observed. For samples reinforced with carbon textile, there were problems with slipping and spalling caused by the concentration of stress at the ends of the piece. Even so, it was possible to clearly determine the three stages in the curve response of the material. The stresses experimentally obtained in the elements reinforced with carbon textile obtained results approximately five times greater than those of the glass fabric.

Related References:

1. Hegger, J.; Will, N.; and Rüberg, K., “Textile Reinforced Concrete — A New Composite Material,” Advances in Construction Materials 2007, C. U. Grosse, ed., Springer, Berlin, Germany, 2007, pp. 147-156.

2. Hinzen, M., “Einfluss von Kurzfasern auf die Frisch- und Festbeton-eigenschaften sowie das Tragverhalten von Textilbeton,” PhD thesis, RWTH Aachen University, Aachen, NRW, Germany, 2014, 295 pp. (in German)

3. Voss, S., “Ingenieurmodelle zum Tragverhalten von Textilbewehrtem Beton,” PhD thesis, RWTH Aachen University, Aachen, NRW, Germany, 2008, 246 pp. (in German)

4. Hegger, J.; Curbach, M.; Stark, A.; Wilhelm, S.; and Farwig, K., “Innovative Design Concepts: Application of Textile Reinforced Concrete to Shell Structures,” Structural Concrete, V. 19, No. 3, June 2018, pp. 637-646. doi: 10.1002/suco.201700157

5. Rawat, P.; Liu, S.; Guo, S.; Zillur Rahman, M.; Yang, T.; Bai, X.; Yao, Y.; Mobasher, B.; and Zhu, D., “A State-of-the-Art Review on Mechanical Performance Characterization and Modelling of High-Performance Textile Reinforced Concretes,” Construction and Building Materials, V. 347, Sept. 2022, Article No. 128521. doi: 10.1016/j.conbuildmat.2022.128521

6. Hartig, J.; Häußler-Combe, U.; and Schicktanz, K., “Influence of Bond Properties on the Tensile Behaviour of Textile Reinforced Concrete,” Cement and Concrete Composites, V. 30, No. 10, Nov. 2008, pp. 898-906. doi: 10.1016/j.cemconcomp.2008.08.004

7. Schütze, E.; Lorenz, E.; and Curbach, M., “Test Methods for Textile Reinforced Concrete,” FERRO-11 and 3rd ICTRC—Proceedings of the 11th International Symposium on Ferrocement and 3rd International Conference on Textile Reinforced Concrete, W. Brameshuber, ed., Aachen, NRW, Germany, 2015, pp. 307-318.

8. de Andrade Silva, F.; Butler, M.; Mechtcherine, V.; Zhu, D.; and Mobasher, B., “Strain Rate Effect on the Tensile Behaviour of Textile-

Reinforced Concrete Under Static and Dynamic Loading,” Materials Science and Engineering: A, V. 528, No. 3, Jan. 2011, pp. 1727-1734. doi: 10.1016/j.msea.2010.11.014

9. Valeri, P.; Fernàndez Ruiz, M.; and Muttoni, A., “Tensile Response of Textile Reinforced Concrete,” Construction and Building Materials, V. 258, Oct. 2020, Article No. 119517. doi: 10.1016/j.conbuildmat.2020.119517

10. Mattarollo, G.; Randl, N.; and Pauletta, M., “Investigation of the Failure Modes of Textile-Reinforced Concrete and Fiber/Textile-

Reinforced Concrete under Uniaxial Tensile Tests,” Materials, V. 16, No. 5, Mar. 2023, Article No. 1999. doi: 10.3390/ma16051999

11. Colombo, I. G.; Magri, A.; Zani, G.; Colombo, M.; and di Prisco, M., “Erratum to: ‘Textile Reinforced Concrete: Experimental Investigation on Design Parameters’,” Materials and Structures, V. 46, No. 11, Nov. 2013, pp. 1953-1971. doi: 10.1617/s11527-013-0023-7

12. Yin, S.; Xu, S.; and Li, H., “Improved Mechanical Properties of Textile Reinforced Concrete Thin Plate,” Journal of Wuhan University of Technology-Materials Science Edition, V. 28, No. 1, Feb. 2013, pp. 92-98. doi: 10.1007/s11595-013-0647-z

13. Mészöly, T.; Ofner, S.; and Randl, N., “Effect of Combining Fiber and Textile Reinforcement on the Flexural Behavior of UHPC Plates,” Advances in Materials Science and Engineering, V. 2020, No. 1, Article No. 9891619.

14. Preinstorfer, P.; Huber, P.; Huber, T.; Kromoser, B.; and Kollegger, J., “Experimental Investigation and Analytical Modelling of Shear Strength of Thin-Walled Textile-Reinforced UHPC Beams,” Engineering Structures, V. 231, Mar. 2021, Article No. 111735. doi: 10.1016/j.engstruct.2020.111735

15. Preinstorfer, P.; Yanik, S.; Kirnbauer, J.; Lees, J. M.; and Robisson, A., “Cracking Behaviour of Textile-Reinforced Concrete with Varying Concrete Cover and Textile Surface Finish,” Composite Structures, V. 312, May 2023, Article No. 116859. doi: 10.1016/j.compstruct.2023.116859

16. Scheerer, S.; Schladitz, F.; and Curbach, M., “Textile Reinforced Concrete–from the Idea to a High-Performance Material,” FERRO-11 and 3rd ICTRC—Proceedings of the 11th International Symposium on Ferrocement and 3rd International Conference on Textile Reinforced Concrete, W. Brameshuber, ed., Aachen, NRW, Germany, 2015, pp. 15-34.

17. Michler, H., “Segmentbrücke aus Textilbewehrtem Beton – Rottachsteg Kempten im Allgäu,” Beton- und Stahlbetonbau, V. 108, No. 5, May 2013, pp. 325-334. doi: 10.1002/best.201300023

18. Hegger, J.; Goralski, C.; and Kulas, C., “Schlanke Fußgängerbrücke aus Textilbeton: Sechsfeldrige Fußgängerbrücke mit einer Gesamtlänge von 97 m,” Beton- und Stahlbetonbau, V. 106, No. 2, Feb. 2011, pp. 64-71. doi: 10.1002/best.201000081

19. Curbach, M.; Graf, W.; Jesse, D.; Sickert, J.-U.; and Weiland, S., “Segmentbrücke aus Textilbewehrtem Beton: Konstruktion, Fertigung, Numerische Berechnung,” Beton- und Stahlbetonbau, V. 102, No. 6, June 2007, pp. 342-352. doi: 10.1002/best.200700550

20. Raupach, M., and Morales Cruz, C., “Textile-Reinforced Concrete: Selected Case Studies,” Textile Fibre Composites in Civil Engineering, T. Triantafillou, ed., Woodhead Publishing, Sawston, UK, 2016, pp. 275-299.

21. Scheerer, S.; Chudoba, R.; Garibaldi, M. P.; and Curbach, M., “Shells Made of Textile Reinforced Concrete – Applications in Germany,” Journal of the International Association for Shell and Spatial Structures, V. 58, No. 1, Mar. 2017, pp. 79-93. doi: 10.20898/j.iass.2017.191.846

22. Kulas, C. H., “Zum Tragverhalten Getränkter Textiler Bewehrungselemente für Betonbauteile,” PhD thesis, RWTH Aachen University, Aachen, NRW, Germany, 2013, 402 pp. (in German)

23. Beckmann, B.; Bielak, J.; Scheerer, S.; Schmidt, C.; Hegger, J.; and Curbach, M., “Standortübergreifende Forschung zu Carbonbetonstrukturen im SFB/TRR 280,” Bautechnik, V. 98, No. 3, Mar. 2021, pp. 232-242. doi: 10.1002/bate.202000116

24. Rempel, S.; Kulas, C.; Will, N.; and Bielak, J., “Extremely Light and Slender Precast Pedestrian-Bridge Made Out of Textile Reinforced Concrete (TRC),” High Tech Concrete: Where Technology and Engineering Meet: Proceedings of the 2017 fib Symposium, held in Maastricht, The Netherlands, June 12-14, 2017, D. A. Hordijk and M. Luković, eds., Springer, Cham, Switzerland, 2018, pp. 2530-2537.

25. Helbig, T.; Unterer, K.; Kulas, C.; Rempel, S.; and Hegger, J., “Fuß- und Radwegbrücke aus Carbonbeton in Albstadt-Ebingen: Die Weltweit erste Ausschließlich Carbonfaserbewehrte Betonbrücke,” Beton- und Stahlbetonbau, V. 111, No. 10, Oct. 2016, pp. 676-685. doi: 10.1002/best.201600058

26. RILEM Technical Committee 232-TDT, “Recommendation of RILEM TC 232-TDT: Test Methods and Design of Textile Reinforced Concrete: Uniaxial Tensile Test: Test Method to Determine the Load Bearing Behavior of Tensile Specimens Made of Textile Reinforced Concrete,” Materials and Structures, V. 49, No. 12, Dec. 2016, pp. 4923-4927.

27. Jesse, F., “Tragverhalten von Filamentgarnen in Zementgebundener Matrix,” PhD dissertation, Dresden University of Technology, Dresden, Saxony, Germany, 2004, 366 pp. (in German)

28. De Santis, S.; Carozzi, F. G.; de Felice, G.; and Poggi, C., “Test Methods for Textile Reinforced Mortar Systems,” Composites Part B: Engineering, V. 127, Oct. 2017, pp. 121-132. doi: 10.1016/j.compositesb.2017.03.016

29. Molter, M., “Zum Tragverhalten von Textilbewehrtem Beton,” PhD dissertation, RWTH Aachen University, Aachen, NRW, Germany, 2005, 221 pp. (in German)

30. John, S. K.; Nadir, Y.; Girija, K.; and Giriprasad, S., “Tensile Behaviour of Glass Fibre Textile Reinforced Mortar with Fine Aggregate Partially Replaced by Fly Ash,” Materials Today: Proceedings, V. 27, Part 1, 2020, pp. 144-149. doi: 10.1016/j.matpr.2019.09.135

31. Saidi, M., and Gabor, A., “Experimental Analysis of the Tensile Behaviour of Textile Reinforced Cementitious Matrix Composites Using Distributed Fibre Optic Sensing (DFOS) Technology,” Construction and Building Materials, V. 230, Jan. 2020, Article No. 117027. doi: 10.1016/j.conbuildmat.2019.117027

32. Zhang, M., and Deng, M., “Tensile Behavior of Textile-

Reinforced Composites Made of Highly Ductile Fiber-Reinforced Concrete and Carbon Textiles,” Journal of Building Engineering, V. 57, Oct. 2022, Article No. 104824. doi: 10.1016/j.jobe.2022.104824

33. Heins, K.; Kimm, M.; Olbrueck, L.; May, M.; Gries, T.; Kolkmann, A.; Ryu, G.-S.; Ahn, G.-H.; and Kim, H.-Y., “Long-Term Bonding and Tensile Strengths of Carbon Textile Reinforced Mortar,” Materials, V. 13, No. 20, Oct. 2020, Article No. 4485. doi: 10.3390/ma13204485

34. Yin, S.-P.; Li, Y.; Jin, Z.-Y.; and Li, P.-H., “Interfacial Properties of Textile-Reinforced Concrete and Concrete in Chloride Freezing-and-Thawing Cycle,” ACI Materials Journal, V. 115, No. 2, Mar. 2018, pp. 197-208.

35. Donnini, J.; Chiappini, G.; Lancioni, G.; and Corinaldesi, V., “Tensile Behaviour of Glass FRCM Systems with Fabrics’ Overlap: Experimental Results and Numerical Modeling,” Composite Structures, V. 212, Mar. 2019, pp. 398-411. doi: 10.1016/j.compstruct.2019.01.053

36. Ortolan, V. K., “Estudo de Matriz Cimentícia Reforçada com Fibra Têxtil para Uso em Painéis,” PhD thesis, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil, 2021, 290 pp. (in Portuguese)

37. Gopinath, S.; Gettu, R.; and Iyer, N. R., “Influence of Prestressing the Textile on the Tensile Behaviour of Textile Reinforced Concrete,” Materials and Structures, V. 51, No. 3, June 2018, Article No. 64. doi: 10.1617/s11527-018-1194-z

38. Butler, M.; Hempel, R.; and Schiekel, M., “The Influence of Short Glass Fibres on the Working Capacity of Textile Reinforced Concrete,” Proceedings of ICTRC’2006 - 1st International RILEM Conference on Textile Reinforced Concrete, J. Hegger, W. Brameshuber, and N. Will, eds., Aachen, NRW, Germany, 2006, pp. 45-54.

39. Hinzen, M., and Brameshuber, W., “Load-Bearing Behaviour of Textile Reinforced Concrete with Short Fibres,” 8th RILEM International Symposium on Fibre Reinforced Concrete: Challenges and Opportunities (BEFIB 2012), J. A. O. Barros, ed., Guimarães, Portugal, 2012, pp. 254-266.

40. Barhum, R., and Mechtcherine, V., “Effect of Short, Dispersed Glass and Carbon Fibres on the Behaviour of Textile-Reinforced Concrete Under Tensile Loading,” Engineering Fracture Mechanics, V. 92, Sept. 2012, pp. 56-71. doi: 10.1016/j.engfracmech.2012.06.001

41. Barhum, R., and Mechtcherine, V., “Influence of Short Dispersed and Short Integral Glass Fibres on the Mechanical Behaviour of Textile-

Reinforced Concrete,” Materials and Structures, V. 46, No. 4, Apr. 2013, pp. 557-572. doi: 10.1617/s11527-012-9913-3

42. Gong, T.; Heravi, A. A.; Alsous, G.; Curosu, I.; and Mechtcherine, V., “The Impact-Tensile Behavior of Cementitious Composites Reinforced with Carbon Textile and Short Polymer Fibers,” Applied Sciences, V. 9, No. 19, Oct. 2019, Article No. 4048. doi: 10.3390/app9194048

43. Mansur de Castro Silva, R., and de Andrade Silva, F., “Carbon Textile Reinforced Concrete: Materials and Structural Analysis,” Materials and Structures, V. 53, No. 1, Feb. 2020, Article No. 17. doi: 10.1617/s11527-020-1448-4

44. Christ, R., “Proposição de um Método de Dosagem para Concretos de Ultra Alto Desempenho (UHPC),” PhD thesis, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, Brazil, 2019, 154 pp. (in Portuguese)

45. ABNT NBR 5739:2018, “Concreto — Ensaio de Compressão de Corpos de Prova Cilíndricos,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, Brazil, 2018, 13 pp.

46. ABNT NBR 8522-1:2021, “Concreto Endurecido — Determinação dos Módulos de Elasticidade e de Deformação: Parte 1: Módulos Estáticos à Compressão,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, Brazil, 2021, 24 pp.

47. Dalazen, C. D. A., “Reforço à Flexão de Vigas em Concreto Armado com a Utilização de Argamassa Reforçada com têxteis de Carbono e de Vidro,” master’s thesis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil, 2021, 142 pp. (in Portuguese)

48. ASTM D885/D885M-10A(2014)e1, “Standard Test Methods for Tire Cords, Tire Cord Fabrics, and Industrial Filament Yarns Made from Manufactured Organic-Base Fibers (Withdrawn 2023),” ASTM International, West Conshohocken, PA, 2014.

49. Bruckermann, O., “Zur Modellierung des Zugtragverhaltens von Textilbewehrtem Beton,” PhD thesis, RWTH Aachen University, Aachen, NRW, Germany, 2007, 198 pp. (in German)


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer