Performance of Double-Headed Studs under Flexure and Shearing

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Performance of Double-Headed Studs under Flexure and Shearing

Author(s): Aaron Nzambi, Denio Oliveira, and Joao Filho

Publication: Structural Journal

Volume: 122

Issue: 4

Appears on pages(s): 51-66

Keywords: anchorage; bauxite; concrete anchoring capacity (CAC); double-headed stud; flexural cracks; pullout strength; punching; shear reinforcement; sustainability; synthetic aggregate

DOI: 10.14359/51745467

Date: 7/1/2025

Abstract:
This experimental study investigates the influence of flexuralcracks and punching shear failure inclination on double-headedstud anchorage within the critical perimeter. The research alsoexplored the technical feasibility of using synthetic coarse aggregatesfrom bauxite residue as a sustainable alternative in structuralconcrete production. The results showed that the overall structuralintegrity is impaired at 40 to 50% due to flexural cracks at thecritical perimeter of 2d (30 degrees); however, the perimeter of1.2d (45 degrees) enhanced the shear reinforcement activationand shear strength up 15%, providing a balanced failure withinthe strengthening zone. Thus, a concrete anchoring capacity (CAC)method was proposed to calculate the contribution of doubleheadedstuds in serviceability and ultimate limit states. In addition,synthetic aggregates performed similarly to natural aggregates,offering environmental benefits such as reducing the carbon footprint and production stages.

Related References:

1. Fenwick, R. C., and Paulay, S. R. T., “Mechanisms of Shear Resistance of Concrete Beams,” Journal of the Structural Division, ASCE, V. 94, No. 10, 1968, pp. 2325-2350.

2. Leonhardt, F., and Mönning, E., “Stoßverbindungen der Bewehrungsstäbe,” Vorlesungen über Massivbau, Springer, Berlin, Germany, 1977. doi: 10.1007/978-3-642-61890-1_5

3. Nzambi, A. K. L.; de Oliveira, D. R. C.; do Nascimento, H. M.; and Azevedo, E. P., “Effect of the Failure Surface Inclination of Punching with Studs as Shear Reinforcement,” Practice Periodical on Structural Design and Construction, V. 28, No. 2, 2023, pp. 1-9. doi: 10.1061/PPSCFX.SCENG-1199

4. de Oliveira, D. R. C.; de Oliveira, A. M.; and da Costa, V. G., “Pull-Out Tests on Handcrafted Headed Studs,” Proceedings of the Institution of Civil Engineers. Structures and Buildings, V. 172, No. 9, 2019, pp. 625-631. doi: 10.1680/jstbu.17.00177

5. Melges, J. L. P., “Punching in Slabs: Calculation Examples Theoretical and Experimental Analysis,” University of São Paulo, São Paulo, Brazil, 1995.

6. Pinto, R. S.; Sousa, V. C.; Tapajós, L. S.; Ferreira, M. P.; and Lima Neto, A. F., “Influence of the Supplementary Reinforcement on the Shear Strength of Beams with Prefabricated Truss Stirrups,” Revista IBRACON de Estruturas e Materiais, V. 15, No. 1, 2022, p. e15106. doi: 10.1590/s1983-41952022000100006

7. Sperry, J.; Darwin, D.; O’Reilly, M.; Lepage, A.; Lequesne, R. D.; Matamoros, A.; Feldman, L. R.; Yasso, S.; Searle, N.; Derubeis, M.; Ajaam, A., “Conventional and High-Strength Steel Hooked Bars: Detailing Effects,” ACI Structural Journal, V. 115, No. 1, Jan. 2018, pp. 247-257. doi: 10.14359/51700920

8. Birkle, G., “Punching of Flat Slabs: The Influence of Slab Thickness and Stud Layout,” PhD thesis, Department of Civil Engineering, University of Calgary, Calgary, AB, Canada, Mar. 2004, 152 pp.

9. Heinzmann, D.; Etter, S.; Villiger, S.; and Jaeger, T., “Punching Tests on Reinforced Concrete Slabs with and without Shear Reinforcement,” ACI Structural Journal, V. 109, No. 6, Nov.-Dec. 2012, pp. 787-794.

10. Mörsch, E., “Versuche mit Säulen und deren Berechnung,” Deutsche Bauzeitung, Nr. 14, Berlin, Germany, 1912, pp. 105-110.

11. Brantschen, F., “Influence of Bond and Anchorage Conditions of the Shear Reinforcement on the Punching Strength of RC Slabs,” doctoral thesis, EPFL – Swiss Federal Technology Institute of Lausanne, Lausanne, Switzerland, 2016.

12. Kueres, D.; Schmidt, P.; and Hegger, J., “Two-Parameter Kinematic Theory for Punching Shear in Reinforced Concrete Slabs with Shear Reinforcement,” Engineering Structures, V. 181, 2019, pp. 216-232. doi: 10.1016/j.engstruct.2018.12.013

13. Ricker, M.; Häusler, F.; and Randl, N., “Punching Strength of Flat Plates Reinforced with UHPC and Double-Headed Studs,” Engineering Structures, V. 136, 2017, pp. 345-354. doi: 10.1016/j.engstruct.2017.01.018

14. Loov, R. E., “Review of A23.3-94 Simplified Method of Shear Design and Comparison with Results Using Shear Friction,” Canadian Journal of Civil Engineering, V. 25, No. 3, 1998, pp. 437-450. doi: 10.1139/l97-101

15. Dilger, W. H., “Flat Slab-Column Connections,” Progress in Structural Engineering and Materials, V. 2, No. 3, 2000, pp. 386-399. doi: 10.1002/1528-2716(200007/09)2:33.0.CO;2-M

16. Dechka, D. C., “Response of Shear-Stud-Reinforced Continuous Slab-Column Frames to Seismic Loads,” PhD thesis, Department of Civil Engineering, University of Calgary, Calgary, AB, Canada, 2001.

17. Muttoni, A., and Schwartz, J., “Behavior of Beams and Punching in Slabs without Shear Reinforcement,” IABSE Colloquium, V. 62, Stuttgart, Germany, 1991, pp. 703-708.

18. Regan, P. E., “Shear Reinforcement of Flat Slabs, International Workshop on Punching Shear Capacity of RC Flat Slabs,” Royal Institute of Technology, Department of Structural Engineering, Stockholm, Sweden, June 2000, pp. 99-107.

19. Marí, A.; Cladera, A.; Oller, E.; and Bairán, J. M., “A Punching Shear Mechanical Model for Reinforced Concrete Flat Slabs with and without Shear Reinforcement,” Engineering Structures, V. 166, 2018, pp. 413-426. doi: 10.1016/j.engstruct.2018.03.079

20. Ferreira, M. P.; Melo, G. S.; Regan, P. E.; and Vollum, R. L., “Punching of Reinforced Concrete Flat Slabs with Double-Headed Shear Reinforcement,” ACI Structural Journal, V. 111, No. 2, Mar.-Apr. 2014, pp. 363-374.

21. Eligehausen, R., and Balogh, T., “Behavior of Fasteners Loaded in Tension in Cracked Reinforced Concrete,” ACI Structural Journal, V. 92, No. 3, May-June 1995, pp. 365-379.

22. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.

23. ABNT NBR 6118:2023, “Projeto de Estruturas de Concreto – Procedimento,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2023.

24. Oliveira, D. R. C., and Rossi, C. R. C., “Concretes with Red Mud Coarse Aggregates,” Materials Research, V. 15, No. 3, 2012, pp. 333-340. doi: 10.1590/S1516-14392012005000033

25. Sagheer, A. M., and Tabsh, S. W., “Shear Strength of Concrete Beams without Stirrups Made with Recycled Coarse Aggregate,” Buildings, V. 13, No. 1, 2022, pp. 1-22. doi: 10.3390/buildings13010075

26. Nzambi, A., and Oliveira, D., “Pull-Out Tests of Handcrafted Studs Embedded in Concrete with Red Mud Synthetic Coarse Aggregate,” Structural Concrete, V. 25, No. 5, 2024, pp. 3383-3397. doi: 10.1002/suco.202300437

27. Azevedo, E.; Oliveira, D.; and Nzambi, A., “Geopolymer Flat Slabs with Synthetic Coarse Aggregate under Punching,” ACI Structural Journal, V. 121, No. 4, July 2024, pp. 161-172.

28. Nzambi, A. K. L. L.; de Oliveira, D. R. C.; do Nascimento, H. M.; and Azevedo, E. P., “Effect of the Failure Surface Inclination of Punching with Studs as Shear Reinforcement,” Practice Periodical on Structural Design and Construction, V. 28, No. 2, 2023, p. 05023002. doi: 10.1061/PPSCFX.SCENG-1199

29. Fuchs, W.; Eligehausen, R.; and Breen, J. E., “Concrete Capacity Design (CCD) Approach for Fastening to Concrete,” ACI Structural Journal, V. 92, No. 1, Jan.-Feb. 1995, pp. 73-94. doi: 10.14359/1533

30. Rodrigues, P. P. F., Parâmetros de Dosagem do Concreto, ET – 67, Associação Brasileira de Cimento Portland, São Paulo, Brazil, 1998.

31. ABNT NBR 7480:2023, “Aço destinado às armaduras para estruturas de concreto armado - Requisitos,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2023.

32. ABNT NBR ISO 6892-1:2018, “Materiais metálicos — Ensaio de Tração Parte 1: Método de ensaio à temperatura ambiente,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2018.

33. Nzambi, A. K. L. L.; de Oliveira, D. R. C.; and Moraes, H. D. S., “Effect of Headed Stud Thickness Embedded in Steel Fiber Concrete on Pull-Out Strength,” Practice Periodical on Structural Design and Construction, V. 29, No. 2, 2024, p. 05024001. doi: 10.1061/PPSCFX.SCENG-1435

34. ABNT NBR 5738:2016, “Concreto-Procedimento para moldagem e cura de corpos de prova,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2016.

35. ABNT NBR 5739:2018, “Concreto – Ensaios de compressão de corpos de prova cilíndricos - Método de ensaio,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, Brazil, 2018.

36. Nzambi, A. K. L., and Oliveira, D. R. C., “Steel Fiber Reinforced Concrete Beams with Predetermined Failure Surface and No Stirrups,” Engineering Structures, V. 290, 2023, p. 116339. doi: 10.1016/j.engstruct.2023.116339

37. Ritter, W., Die Bauwerise hennebique, Schweritzerische Bauzeritung, Zurich, Switzerland, 1899.

38. Mörsch, E., Der Eisenbetonbau seine Theorie und Anwendung (Theory and Applications of Reinforced Concrete), Verlag Konrad Wittwer, Stuttgart, Germany, 1902.

39. fib, “Design of Fastenings in Concrete—Design Guide - Parts 1 to 3,” CEB Bulletin D'Information No. 233, International Federation for Structural Concrete, Lausanne, Switzerland, 1997, 83 pp.

40. Rossi, E., and Sales, A., “Carbon Footprint of Coarse Aggregate in Brazilian Construction,” Construction and Building Materials, V. 72, 2014, pp. 333-339. doi: 10.1016/j.conbuildmat.2014.08.090


ALSO AVAILABLE IN:

Electronic Structural Journal



  

Edit Module Settings to define Page Content Reviewer