Preparation of Performance-Enhanced Alkali-Activated Slag by Using L-Ascorbic Acid

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Preparation of Performance-Enhanced Alkali-Activated Slag by Using L-Ascorbic Acid

Author(s): Peiyuan Chen, Chunning Pei, Liheng Zhang, Shangkun Li, and Jialai Wang

Publication: Materials Journal

Volume: 121

Issue: 5

Appears on pages(s): 105-114

Keywords: alkali-activated slag (AAS); autogenous shrinkage; complex; L-ascorbic acid (LAA); setting time.

DOI: 10.14359/51742041

Date: 9/1/2024

Abstract:
The applications of alkali-activated slag (AAS) face challenges such as poor workability, rapid setting, and high autogenous shrinkage, which require chemical admixtures (CAs) to adjust the performance of AAS. Unfortunately, there are limited specific CAs available to tune AAS properties. To address this gap, this study proposes using a ubiquitous, naturally occurring compound, L-ascorbic acid (LAA), as a multifunctional performanceenhancing additive for AAS to overcome the major challenges of AAS. The findings showed that LAA can function as a retarder, plasticizer, strength enhancer, and autogenous shrinkage reducer for AAS. When 0.5% LAA was added, the compressive strengths of AAS mortars at 3 and 28 days increased by 28.9% and 19.6%, respectively, and the 28-day autogenous shrinkage decreased by 43.1%. Both surface adsorption and ion complexation have been confirmed as the working mechanisms of LAA in hydrated AAS.

Related References:

1. Pal, A., “Developing Low-Clinker Ternary Blends for Indian Cement Industry,” Journal of The Institution of Engineers (India): Series A, V. 99, Sept. 2018, pp. 433-447. doi: 10.1007/s40030-018-0309-4

2. Josa, A.; Aguado, A.; Heino, A.; Byars, E.; and Cardim, A., “Comparative Analysis of Available Life Cycle Inventories of Cement in the EU,” Cement and Concrete Research, V. 34, No. 8, Aug. 2004, pp. 1313-1320.

3. Chen, P.; Wang, J.; Wang, L.; and Xu, Y., “Perforated Cenospheres: A Reactive Internal Curing Agent for Alkali Activated Slag Mortars,” Cement and Concrete Composites, V. 104, Nov. 2019, Article No. 103351. doi: 10.1016/j.cemconcomp.2019.103351

4. Juenger, M. C. G.; Winnefeld, F.; Provis, J. L.; and Ideker, J. H., “Advances in Alternative Cementitious Binders,” Cement and Concrete Research, V. 41, No. 12, Dec. 2011, pp. 1232-1243. doi: 10.1016/j.cemconres.2010.11.012

5. Keulen, A.; Yu, Q. L.; Zhang, S.; and Grünewald, S., “Effect of Admixture on the Pore Structure Refinement and Enhanced Performance of Alkali-Activated Fly Ash-Slag Concrete,” Construction and Building Materials, V. 162, Feb. 2018, pp. 27-36. doi: 10.1016/j.conbuildmat.2017.11.136

6. Tong, S.; Yuqi, Z.; and Qiang, W., “Recent Advances in Chemical Admixtures for Improving the Workability of Alkali-Activated Slag-Based Material Systems,” Construction and Building Materials, V. 272, Feb. 2021, Article No. 121647.

7. Alrefaei, Y.; Wang, Y.-S.; and Dai, J.-G., “Effect of Mixing Method on the Performance of Alkali-Activated Fly Ash/Slag Pastes along with Polycarboxylate Admixture,” Cement and Concrete Composites, V. 117, Mar. 2021, Article No. 103917. doi: 10.1016/j.cemconcomp.2020.103917

8. Luukkonen, T.; Abdollahnejad, Z.; Ohenoja, K.; Kinnunen, P.; and Illikainen, M., “Suitability of Commercial Superplasticizers for One-Part Alkali-Activated Blast-Furnace Slag Mortar,” Journal of Sustainable Cement-Based Materials, V. 8, No. 4, 2019, pp. 244-257. doi: 10.1080/21650373.2019.1625827

9. Zhang, Y.; Luo, X.; Kong, X.; Wang, F.; and Gao, L., “Rheological Properties and Microstructure of Fresh Cement Pastes with Varied Dispersion Media and Superplasticizers,” Powder Technology, V. 330, May 2018, pp. 219-227. doi: 10.1016/j.powtec.2018.02.014

10. Łaźniewska-Piekarczyk, B., “The Methodology for Assessing the Impact of New Generation Superplasticizers on Air Content in Self-

Compacting Concrete,” Construction and Building Materials, V. 53, Feb. 2014, pp. 488-502. doi: 10.1016/j.conbuildmat.2013.11.092

11. Alrefaei, Y.; Wang, Y.-S.; and Dai, J.-G., “The Effectiveness of Different Superplasticizers in Ambient Cured One-Part Alkali Activated Pastes,” Cement and Concrete Composites, V. 97, Mar. 2019, pp. 166-174. doi: 10.1016/j.cemconcomp.2018.12.027

12. Kashani, A.; Provis, J. L.; Xu, J.; Kilcullen, A. R.; Qiao, G. G.; and van Deventer, J. S. J., “Effect of Molecular Architecture of Polycarboxylate Ethers on Plasticizing Performance in Alkali-Activated Slag Paste,” Journal of Materials Science, V. 49, No. 7, Apr. 2014, pp. 2761-2772. doi: 10.1007/s10853-013-7979-0

13. Palacios, M.; Banfill, P. F. G.; and Puertas, F., “Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture,” ACI Materials Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 140-148. doi: 10.14359/19754

14. Conte, T., and Plank, J., “Impact of Molecular Structure and Composition of Polycarboxylate Comb Polymers on the Flow Properties of Alkali-

Activated Slag,” Cement and Concrete Research, V. 116, Feb. 2019, pp. 95-101. doi: 10.1016/j.cemconres.2018.11.014

15. Chen, P.; Zhang, L.; Wang, J.; Lou, X.; Huang, L.; and Xu, Y., “Exploring Vitamin-C as a Retarder for Calcium Sulfoaluminate Cement,” Construction and Building Materials, V. 312, Dec. 2021, Article No. 125334. doi: 10.1016/j.conbuildmat.2021.125334

16. Fuchs-Godec, R.; Pavlovic, M. G.; and Tomic, M. V., “The Inhibitive Effect of Vitamin-C on the Corrosive Performance of Steel in HCl Solutions,” International Journal of Electrochemical Science, V. 8, No. 1, Jan. 2013, pp. 1511-1519. doi: 10.1016/S1452-3981(23)14115-0

17. Fuchs-Godec, R.; Pavlovic, M. G.; and Tomic, M. V., “The Inhibitive Effect of Vitamin-C on the Corrosive Performance of Steel in HCl Solutions - Part II,” International Journal of Electrochemical Science, V. 10, No. 12, Dec. 2015, pp. 10502-10512. doi: 10.1016/S1452-3981(23)11275-2

18. Erel-Unal, I., and Sukhishvili, S. A., “Hydrogen-Bonded Multilayers of a Neutral Polymer and a Polyphenol,” Macromolecules, V. 41, No. 11, June 2008, pp. 3962-3970. doi: 10.1021/ma800186q

19. Andjelković, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; and Verhe, R., “Iron-Chelation Properties of Phenolic Acids Bearing Catechol and Galloyl Groups,” Food Chemistry, V. 98, No. 1, 2006, pp. 23-31. doi: 10.1016/j.foodchem.2005.05.044

20. ASTM C191-99, “Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle,” ASTM International, West Conshohocken, PA, 1999, 6 pp.

21. ASTM C1437-20, “Standard Test Method for Flow of Hydraulic Cement Mortar,” ASTM International, West Conshohocken, PA, 2020, 2 pp.

22. ASTM C1698-09(2014), “Standard Test Method for Autogenous Strain of Cement Paste and Mortar,” ASTM International, West Conshohocken, PA, 2014, 8 pp.

23. Wang, X.; Wang, W.; Huang, J.; Wang, Z.; Ma, S.; and Liu, Y., “Relationship between Internal Humidity and Drying Shrinkage of Recycled Aggregate Thermal Insulation Concrete Considering Recycled Aggregate Content,” Construction and Building Materials, V. 355, Nov. 2022, Article No. 129224. doi: 10.1016/j.conbuildmat.2022.129224

24. Brue, F. N. G.; Davy, C. A.; Burlion, N.; Skoczylas, F.; and Bourbon, X., “Five Year Drying of High Performance Concretes: Effect of Temperature and Cement-Type on Shrinkage,” Cement and Concrete Research, V. 99, Sept. 2017, pp. 70-85. doi: 10.1016/j.cemconres.2017.04.017

25. Fang, Y.; Wang, J.; Qian, X.; Wang, L.; Dong, Y.; and Qiao, P., “Low-Cost, Ubiquitous Biomolecule as a Strength Enhancer for Cement Mortars,” Construction and Building Materials, V. 311, Dec. 2021, Article No. 125305. doi: 10.1016/j.conbuildmat.2021.125305

26. Provis, J. L.; Brice, D. G.; Buchwald, A.; Duxson, P.; Kavalerova, E.; Krivenko, P. V.; Shi, C.; van Deventer, J. S. J.; and Wiercx, J. A. L. M., “Demonstration Projects and Applications in Building and Civil Infrastructure,” Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM, J. L. Provis and J. S. J. van Deventer, eds., Springer, Dordrecht, the Netherlands, 2014, pp. 309-338. doi: 10.1007/978-94-007-7672-2_11

27. Fernández-Jiménez, A., and Puertas, F., “Alkali-Activated Slag Cements: Kinetic Studies,” Cement and Concrete Research, V. 27, No. 3, Mar. 1997, pp. 359-368. doi: 10.1016/S0008-8846(97)00040-9

28. Zhang, L.; Chen, P.; Xu, Y.; Hu, X.; and Wang, Y., “Upcycling Waste Flavedo into a Bio-Admixture of Set Retarder and Compressive Strength Enhancer for Cement-Based Materials,” Journal of Cleaner Production, V. 332, Jan. 2022, Article No. 130060. doi: 10.1016/j.jclepro.2021.130060

29. De Filippis, U.; Prud’homme, E.; and Meille, S., “Relation between Activator Ratio, Hydration Products and Mechanical Properties of Alkali-

Activated Slag,” Construction and Building Materials, V. 266, Part A, Jan. 2021, Article No. 120940. doi: 10.1016/j.conbuildmat.2020.120940

30. Ipavec, A.; Gabrovšek, R.; Vuk, T.; Kaučič, V.; Maček, J.; and Meden, A., “Carboaluminate Phases Formation During the Hydration of Calcite-Containing Portland Cement,” Journal of the American Ceramic Society, V. 94, No. 4, Apr. 2011, pp. 1238-1242. doi: 10.1111/j.1551-2916.2010.04201.x

31. Bernal, S. A.; Rodríguez, E. D.; Mejía de Gutiérrez, R.; Gordillo, M.; and Provis, J. L., “Mechanical and Thermal Characterisation of Geopolymers Based on Silicate-Activated Metakaolin/Slag Blends,” Journal of Materials Science, V. 46, No. 16, Aug. 2011, pp. 5477-5486. doi: 10.1007/s10853-011-5490-z

32. Melo Neto, A. A.; Cincotto, M. A.; and Repette, W., “Drying and Autogenous Shrinkage of Pastes and Mortars with Activated Slag Cement,” Cement and Concrete Research, V. 38, No. 4, Apr. 2008, pp. 565-574. doi: 10.1016/j.cemconres.2007.11.002

33. Juenger, M. C. G., and Jennings, H. M., “New Insights into the Effects of Sugar on the Hydration and Microstructure of Cement Pastes,” Cement and Concrete Research, V. 32, No. 3, Mar. 2002, pp. 393-399. doi: 10.1016/S0008-8846(01)00689-5

34. Krizan, D., and Zivanovic, B., “Effects of Dosage and Modulus of Water Glass on Early Hydration of Alkali–Slag Cements,” Cement and Concrete Research, V. 32, No. 8, Aug. 2002, pp. 1181-1188. doi: 10.1016/S0008-8846(01)00717-7

35. Bernal, S. A.; Provis, J. L.; Rose, V.; and Mejía de Gutierrez, R., “Evolution of Binder Structure in Sodium Silicate-Activated Slag-

Metakaolin Blends,” Cement and Concrete Composites, V. 33, No. 1, Jan. 2011, pp. 46-54. doi: 10.1016/j.cemconcomp.2010.09.004

36. Shi, C., and Day, R. L., “A Calorimetric Study of Early Hydration of Alkali-Slag Cements,” Cement and Concrete Research, V. 25, No. 6, Aug. 1995, pp. 1333-1346. doi: 10.1016/0008-8846(95)00126-W

37. Fang, Y.; Wang, J.; Qian, X.; Wang, L.; Chen, P.; and Qiao, P., “A Renewable Admixture to Enhance the Performance of Cement Mortars through a Pre-hydration Method,” Journal of Cleaner Production, V. 332, Jan. 2022, Article No. 130095. doi: 10.1016/j.jclepro.2021.130095

38. Li, Z.; Chen, Y.; Provis, J. L.; Cizer, Ö.; and Ye, G., “Autogenous Shrinkage of Alkali-Activated Slag: A Critical Review,” Cement and Concrete Research, V. 172, Oct. 2023, Article No. 107244. doi: 10.1016/j.cemconres.2023.107244

39. Liang, G., and Yao, W., “Effect of Diatomite on the Reaction Kinetics, Early-Age Chemical Shrinkage and Microstructure of Alkali-

Activated Slag Cements,” Construction and Building Materials, V. 376, May 2023, Article No. 131026. doi: 10.1016/j.conbuildmat.2023.131026


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer