Mixture Design for Lightweight Geopolymer Concrete

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

  


Title: Mixture Design for Lightweight Geopolymer Concrete

Author(s): Sathya Thukkaram and Arun Kumar Ammasi

Publication: Materials Journal

Volume: 121

Issue: 5

Appears on pages(s): 91-104

Keywords: geopolymer; lightweight aggregates; lightweight concrete (LWC); mixture design

DOI: 10.14359/51742040

Date: 9/1/2024

Abstract:
Lightweight concrete (LWC) finds wide-ranging applications inthe construction industry due to its reduced dead load, good fireresistance, and low thermal and acoustic conductivity. Lightweightgeopolymer concrete (LWGC) is an emerging type ofconcrete that is garnering attention in the construction industryfor its sustainable and eco-friendly properties. LWGC is producedusing geopolymer binders instead of cement, thereby reducing thecarbon footprint associated with conventional concrete production.However, the absence of standard codes for geopolymer concreterestricts its widespread application. To address this limitation,an investigation focused on developing a new mixture design forLWGC by modifying the existing ACI 211.2-98 provisions has beencarried out. In this study, crucial parameters of LWGC, such asalkaline-binder ratio (A/B), molarity, silicate/hydroxide ratio, andcuring temperature, were established using machine learning techniques. As a result, a simple and efficient method for determining the mixture proportions for LWGC has been proposed.

Related References:

1. ACI Committee 213, “Guide for Structural Lightweight-Aggregate Concrete (ACI PRC-213-14) (Reapproved 2023),” American Concrete Institute, Farmington Hills, MI, 2014, 53 pp.

2. Nawy, E. G., Fundamentals of High-Performance Concrete, second edition, John Wiley & Sons, Inc., Hoboken, NJ, 2000, 464 pp.

3. Pongsopha, P.; Sukontasukkul, P.; Zhang, H.; and Limkatanyu, S., “Thermal and Acoustic Properties of Sustainable Structural Lightweight Aggregate Rubberized Concrete,” Results in Engineering, V. 13, No. 3, Mar. 2022.

4. Carrillo, J.; Lizarazo, J. M.; and Bonett, R., “Effect of Lightweight and Low-Strength Concrete on Seismic Performance of Thin Lightly-

Reinforced Shear Walls,” Engineering Structures, V. 93, 2015, pp. 61-69. doi: 10.1016/j.engstruct.2015.03.022

5. Go, C. G.; Tang, J. R.; Chi, J. H.; Chen, C.-T.; and Huang, Y.-L., “Fire-Resistance Property of Reinforced Lightweight Aggregate Concrete Wall,” Construction and Building Materials, V. 30, 2012, pp. 725-733. doi: 10.1016/j.conbuildmat.2011.12.081

6. ACI Committee 211, “Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2-98) (Reapproved 2004),” American Concrete Institute, Farmington Hills, MI, 1998, 20 pp.

7. Tale Masoule, M. S.; Bahrami, N.; Karimzadeh, M.; Mohasanati, B.; Shoaei, P.; Ameri, F.; and Ozbakkaloglu, T., “Lightweight Geopolymer Concrete: A Critical Review on the Feasibility, Mixture Design, Durability Properties, and Microstructure,” Ceramics International, V. 48, No. 8, 2022, pp. 10347-10371. doi: 10.1016/j.ceramint.2022.01.298

8. Elmesalami, N., and Celik, K., “A Critical Review of Engineered Geopolymer Composite: A Low-Carbon Ultra-High-Performance Concrete,” Construction and Building Materials, V. 346, Sept. 2022. doi: 10.1016/j.conbuildmat.2022.128491

9. Mohamed, R.; Abd Razak, R.; Abdullah, M. M. A. B.; Rahim, S. Z. A. A; Yuan-Li, L.; Subaer; Sandu, A. V.; and Wystocki, J. J., “Heat Evolution of Alkali-Activated Materials: A Review on Influence Factors,” Construction and Building Materials, V. 314, 2022. doi: 10.1016/j.conbuildmat.2021.125651

10. Lahoti, M.; Tan, K. H.; and Yang, E. H., “A Critical Review of Geopolymer Properties for Structural Fire-Resistance Applications,” Construction and Building Materials, V. 221, 2019, pp. 514-526. doi: 10.1016/j.conbuildmat.2019.06.076

11. Ozcelikci, E.; Kul, A.; Gunal, M. F.; Ozel, B. F.; Yildirim, G.; Ashour, A.; and Sahmaran, M., “A Comprehensive Study on the Compressive Strength, Durability-Related Parameters and Microstructure of Geopolymer Mortars Based on Mixed Construction and Demolition Waste,” Journal of Cleaner Production, V. 396, Apr. 2023.

12. Ansari, M. A.; Shariq, M.; and Mahdi, F., “Geopolymer Concrete for Clean and Sustainable Construction – A State-of-the-Art Review on the Mix Design Approaches,” Structures, V. 55, 2023, pp. 1045-1070. doi: 10.1016/j.istruc.2023.06.089

13. Onoue, K.; Sagawa, Y.; Atarashi, D.; and Takayama, Y., “Optimization of Mix Proportions and Manufacturing Conditions of Fly Ash-Based Geopolymer Mortar by Parameters Design with Dynamic Characteristics,” Cement and Concrete Composites, V. 133, 2022.

14. Gopalakrishna, B., and Dinakar, P., “The Study on Various Temperature Condition of Fly Ash Based Geopolymer Mortar,” Materials Today: Proceedings, V. 93, 2023, pp. 234-238. doi: 10.1016/j.matpr.2023.07.176

15. Ghafoor, M. T.; Fujiyama, C.; and Maekawa, K., “Mix Design Processing for Self Compacting Geopolymer Mortar,” Journal of Advanced Concrete Technology, V. 19, No. 11, 2021, pp. 1133-1147. doi: 10.3151/jact.19.1133

16. Pavithra, P.; Srinivasula Reddy, M.; Dinakar, P.; Hanumantha Rao, B.; Satpathy, B. K.; and Mohanty, A. N., “A Mix Design Procedure for Geopolymer Concrete with Fly Ash,” Journal of Cleaner Production, V. 133, 2016, pp. 117-125. doi: 10.1016/j.jclepro.2016.05.041

17. Nunez, I.; Marani, A.; Flah, M.; and Nehdi, M. L., “Estimating Compressive Strength of Modern Concrete Mixtures Using Computational Intelligence: A Systematic Review,” Construction and Building Materials, V. 310, 2021. doi: 10.1016/j.conbuildmat.2021.125279

18. Adessina, A.; Fraj, A. B.; and Barthélémy, J. F., “Improvement of the Compressive Strength of Recycled Aggregate Concretes and Relative Effects on Durability Properties,” Construction and Building Materials, V. 384, 2023. doi: 10.1016/j.conbuildmat.2023.131447

19. Luan, C., Shi, X., Zhang, K., Utashev, N.; Yang, F.; Dai, J.; and Wang, Q., “A Mix Design Method of Fly Ash Geopolymer Concrete Based on Factors Analysis,” Construction and Building Materials, V. 272, 2021. doi: 10.1016/j.conbuildmat.2020.121612

20. Dinesh, A.; Anitha Selvasofia, S. D.; Datcheen, K. S.; and Rakhesh Varshan, D., “Machine Learning for Strength Evaluation of Concrete Structures – Critical Review,” Materials Today: Proceedings, 2023. doi: 10.1016/j.matpr.2023.04.090

21. Ahmed, A. H.; Jin, W.; and Hussein, M. A., “Artificial Intelligence Models for Predicting Mechanical Properties of Recycled Aggregate Concrete (RAC): Critical Review,” Journal of Advanced Concrete Technology, V. 20, No. 6, 2022, pp. 404-429. doi: 10.3151/jact.20.404

22. Hu, X.; Li, B.; Mo, Y.; and Alselwi, O., “Progress in Artificial Intelligence-Based Prediction of Concrete Performance,” Journal of Advanced Concrete Technology, V. 19, No. 8, 2021, pp. 924-936. doi: 10.3151/jact.19.924

23. Zhang, C.; Zhu, Z.; Liu, F.; Yang, Y.; Wan, Y.; Huo, W.; and Yang, L., “Efficient Machine Learning Method for Evaluating Compressive Strength of Cement Stabilized Soft Soil,” Construction and Building Materials, V. 392, 2023. doi: 10.1016/j.conbuildmat.2023.131887

24. Parathi, S.; Nagarajan, P.; and Pallikkara, S. A., “Ecofriendly Geopolymer Concrete: A Comprehensive Review,” Clean Technologies and Environmental Policy, V. 23, No. 6, 2021, pp. 1701-1713. doi: 10.1007/s10098-021-02085-0

25. Pather, B.; Ekolu, S. O.; and Quainoo, H., “Effects of Aggregate Types on Acid Corrosion Attack Upon Fly-Ash Geopolymer and Portland Cement Concretes – Comparative Study,” Construction and Building Materials, V. 313, 2021. doi: 10.1016/j.conbuildmat.2021.125468

26. Luo, Y., Jiang, Z., Wang, D., Lv, Y.; Gao, C.; and Xue, G., “Effects of Alkaline Activators on Pore Structure and Mechanical Properties of Ultrafine Metakaolin Geopolymers Cured at Room Temperature,” Construction and Building Materials, V. 361, 2022. doi: 10.1016/j.conbuildmat.2022.129678

27. Nakum, A. V., and Arora, N. K., “The Impact of Alkaline Solution to Fly Ash Ratio with Different Molarities of Sodium Hydroxide on Self-Compacted Geopolymer Concrete,” Materials Today: Proceedings, V. 62, 2022, pp. 4168-4176. doi: 10.1016/j.matpr.2022.04.688

28. Praveen Kumar, K.; Radhakrishna; Ramesh, P. S.; and Aravinda, P. T., “Effect of Fines on Strength and Durability of Concrete with Manufactured Sand,” Materials Today: Proceedings, V. 66, 2022, pp. 2381-2386.

29. Bejan, G.; Barbua, M.; Vizitiu, R. S.; and Burlacu, A., “Lightweight Concrete with Waste – Review,” Procedia Manufacturing, V. 46, 2020, pp. 136-143.

30. Thukkaram, S., and Kumar, A. A., “Behaviour of Sewage Sludge-Based Lightweight Aggregate in Geopolymer Concrete,” Materials Research Express, V. 11, No. 5, 2024, p. 055501. doi: 10.1088/2053-1591/ad4198

31. Yu, L.; Wang, S.; Qiao, Z.; Xu, L.; Wu, K.; Li, P.; and Yang, Z., “Effect of Curing Time and Temperature on the Mechanical Properties of Green and Ultra-High-Strength Non-Sintered Aggregate Via Autoclave Technology,” Construction and Building Materials, V. 374, 2023. doi: 10.1016/j.conbuildmat.2023.130874

32. Zaid, O.; Alsharari, F.; Althoey, F.; Elhag, A. B.; Hadidi, H. M.; and Abuhussain, M. A., “Assessing the Performance of Palm Oil Fuel Ash and Lytag on the Development of Ultra-High-Performance Self-Compacting Lightweight Concrete with Waste Tire Steel Fibers,” Journal of Building Engineering, V. 76, Oct. 2023. doi: 10.1016/j.jobe.2023.107112

33. Gultekin, A., and Ramyar, K., “Effect of Curing Type on Microstructure and Compressive Strength of Geopolymer Mortars,” Ceramics International, V. 48, No. 11, 2022, pp. 16156-16172. doi: 10.1016/j.ceramint.2022.02.163

34. Dong, W.; Huang, Y.; Cui, A.; and Ma, G., “Mix Design Optimization for Fly Ash-Based Geopolymer with Mechanical, Environmental, and Economic Objectives Using Soft Computing Technology,” Journal of Building Engineering, V. 72, 2023. doi: 10.1016/j.jobe.2023.106577

35. Kamath, M.; Prashant, S.; and Kumar, M., “Micro-Characterisation of Alkali Activated Paste with Fly Ash-GGBS-Metakaolin Binder System with Ambient Setting Characteristics,” Construction and Building Materials, V. 277, 2021. doi: 10.1016/j.conbuildmat.2021.122323

36. Xu, C.; Fu, L.; Lin, T.; Li, W.; and Ma, S., “Machine Learning in Petrophysics: Advantages and Limitations,” Artificial Intelligence in Geosciences, V. 3, 2022, pp. 157-161. doi: 10.1016/j.aiig.2022.11.004

37. Khan, M. I., and Abbas, Y. M., “Robust Extreme Gradient Boosting Regression Model for Compressive Strength Prediction of Blast Furnace Slag and Fly Ash Concrete,” Materials Today. Communications, V. 35, 2023, p. 105793 doi: 10.1016/j.mtcomm.2023.105793

38. Zhang, J.; Ma, G.; Huang, Y.; sun, J.; Aslani, F.; and Nener, B., “Modelling Uniaxial Compressive Strength of Lightweight Self-

Compacting Concrete Using Random Forest Regression,” Construction and Building Materials, V. 210, 2019, pp. 713-719. doi: 10.1016/j.conbuildmat.2019.03.189

39. Bezabih, T.; Kanali, C.; and Thuo, J., “Effects of Teff Straw Ash on the Mechanical and Microstructural Properties of Ambient Cured Fly Ash-Based Geopolymer Mortar for Onsite Applications,” Results in Engineering, V. 18, 2023.

40. John, S. K.; Nadir, Y.; and Girija, K., “Effect of Source Materials, Additives on the Mechanical Properties and Durability of Fly Ash and Fly Ash-Slag Geopolymer Mortar: A Review,” Construction and Building Materials, V. 280, 2021. doi: 10.1016/j.conbuildmat.2021.122443

41. Toniolo, N., and Boccaccini, A. R., “Fly Ash-Based Geopolymers Containing Added Silicate Waste. A Review,” Ceramics International, V. 43, No. 17, 2017, pp. 14545-14551. doi: 10.1016/j.ceramint.2017.07.221

42. Li, X.; Bai, C.; Qiao, Y.; Wang, X.; Yang, K.; and Colombo, P., “Preparation, Properties and Applications of Fly Ash-Based Porous Geopolymers: A Review,” Journal of Cleaner Production, V. 359, 2022. doi: 10.1016/j.jclepro.2022.132043

43. Klima, K. M.; Schollbach, K.; Brouwers, H. J. H.; and Yu, Q., “Thermal and Fire Resistance of Class F Fly Ash Based Geopolymers – A Review,” Construction and Building Materials, V. 323, Mar. 2022. doi: 10.1016/j.conbuildmat.2022.126529

44. Atabey, İ. İ.; Karahan, O.; Bilim, C.; and Atiş, C. D., “The Influence of Activator Type and Quantity on the Transport Properties of Class F Fly Ash Geopolymer,” Construction and Building Materials, V. 264, 2020. doi: 10.1016/j.conbuildmat.2020.120268

45. Onoue, K.; Sagawa, Y.; Atarashi, D.; and Takayama, Y., “Optimization of Mix Proportions and Manufacturing Conditions of Fly Ash-Based Geopolymer Mortar by Parameters Design with Dynamic Characteristics,” Cement and Concrete Composites, V. 133, 2022. doi: 10.1016/j.cemconcomp.2022.104645

46. Jiao, Z.; Li, X.; Yu, Q.; Yao, Q.; and Hu, P., “Sulfate Resistance of Class C/Class F Fly Ash Geopolymers,” Journal of Materials Research and Technology, V 23, 2023, pp. 1767-1780. doi: 10.1016/j.jmrt.2023.01.131

47. Liu, M.; Hu, R.; Zhang, Y.; Wang, C.; and Ma, Z., “Effect of Ground Concrete Waste as Green Binder on the Micro-Macro Properties of Eco-Friendly Metakaolin-Based Geopolymer Mortar,” Journal of Building Engineering, V. 68, 2023. doi: 10.1016/j.jobe.2023.106191

48. Oyejobi, D. O.; Adewuyi, A. P.; Hassan, I. A.; Suleiman, I.; Oyebanji, Y. O.; and Yusuf, S. O., “Performance Evaluation of Fly-Ash Based Geopolymer Mortar,” Materials Today: Proceedings, V. 86, 2023, pp. 88-95. doi: 10.1016/j.matpr.2023.03.292

49. Karakaş, H.; İlkentapar, S.; Durak, U.; and Örklemez, E., “Properties of Fly Ash-Based Lightweight-Geopolymer Mortars Containing Perlite Aggregates: Mechanical, Microstructure, and Thermal Conductivity Coefficient,” Construction and Building Materials, V. 362, 2023.doi: 10.1016/j.conbuildmat.2022.129717

50. Tenepalli, J. S., and Neeraja, D., “Properties of Class F Fly Ash Based Geopolymer Mortar Produced with Alkaline Water,” Journal of Building Engineering, V. 19, 2018, pp. 42-48. doi: 10.1016/j.jobe.2018.04.031

51. Zhang, R.; Li, Y.; Goh, A. T. C.; Zhang, W.; and Chen, Z., “Analysis of Ground Surface Settlement in Anisotropic Clays Using Extreme Gradient Boosting and Random Forest Regression Models,” Journal of Rock Mechanics and Geotechnical Engineering, V. 13, No. 6, 2021, pp. 1478-1484. doi: 10.1016/j.jrmge.2021.08.001

52. Soutsos, M.; Boyle, A. P.; Vinai, R.; Hadjierakleous, A.; and Barnett, S. J., “Factors Influencing the Compressive Strength of Fly Ash Based Geopolymers,” Construction and Building Materials, V. 110, 2016, pp. 355-368. doi: 10.1016/j.conbuildmat.2015.11.045

53. Li, X.; Wang, Y.; Basu, S., Kumbier, K.; and Yu, B., “A Debiased MDI Feature Importance Measure for Random Forests,” 33rd Conference on Neural Information Processing Systems, 2019, pp. 1-11.

54. Belgiu, M., and Drăguţ, L., “Random Forest in Remote Sensing: A Review of Applications and Future Directions,” ISPRS Journal of Photogrammetry and Remote Sensing, V. 114, 2016, pp. 24-31. doi: 10.1016/j.isprsjprs.2016.01.011

55. Otchere, D. A.; Ganat, T. O. A.; Nta, V.; Brantson, E. T.; and Sharma, T., “Data Analytics and Bayesian Optimised Extreme Gradient Boosting Approach to Estimate Cut-Offs From Wireline Logs for Net Reservoir and Pay Classification,” Applied Soft Computing, V. 120, 2022.

56. Chicco, D.; Warrens, M. J.; and Jurman, G., “The Coefficient of Determination R-Squared is more Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation,” PeerJ Computer Science, V. 7, 2021, pp. 1-24. doi: 10.7717/peerj-cs.623

57. Emmanuel, T.; Maupong, T.; Mpoeleng, D.; Semong, T.; Mphago, B.; and Tabona, O., “A Survey on Missing Data in Machine Learning,” Journal of Big Data, V. 8, No. 1, 2021, p. 140. doi: 10.1186/s40537-021-00516-9

58. Sangoju, B.; Ramesh, G.; Bharatkumar, B. H.; and Ramanjaneyulu, K., “Evaluation of Durability Parameters of Concrete with Manufacture Sand and River Sand,” Journal of the Institution of Engineers (India): Series A, V. 98, No. 3, 2017, pp. 267-275.

59. Khale, D., and Chaudhary, R., “Mechanism of Geopolymerization and Factors Influencing Its Development: A Review,” Journal of Materials Science, V. 42, No. 3, 2007, pp. 729-746. doi: 10.1007/s10853-006-0401-4


ALSO AVAILABLE IN:

Electronic Materials Journal



  

Edit Module Settings to define Page Content Reviewer