Title:
Characterization of Novel Natural Fiber-Reinforced Strain- Hardening Cementitious Composites
Author(s):
N. Premkumar, J. Maheswaran, and M. Chellapandian
Publication:
Materials Journal
Volume:
121
Issue:
5
Appears on pages(s):
75-90
Keywords:
alkaline treatment; mechanical characterization; microstructure analysis; natural fibers; strain-hardening cementitious composites (SHCCs)
DOI:
10.14359/51740783
Date:
9/1/2024
Abstract:
In this research work, efforts to develop a sustainable natural
fiber-reinforced strain-hardening cementitious composite
(NFSHCC) mixture are attempted. The key objective of the present
study is to develop and characterize the NFSHCC mixture prepared
using plant-based fibers such as pineapple, flax, kenaf, and hemp.
First, the raw natural fibers were pretreated using an alkaline
NaOH solution to remove the biodegradable properties such as
wax, lignin, and so on. Using the treated natural fibers, an NFSHCC
mixture was produced for a detailed mechanical and morphological
characterization. Results reveal that flax fiber-based SHCC could
develop the characteristics of artificial fiber-based SHCC, such
as high tensile strength and large ultimate strain limits. Specifically,
the flax SHCC specimens showed a large tensile strength and
ultimate strain values of 10.3 MPa (1.49 ksi) and 2.5%, respectively.
Moreover, the microstructural characterization using fieldemission
scanning electron microscope analysis (FESEM) revealed
excellent matrix-fiber bonding, which eventually led all NFSHCC
samples to exhibit better mechanical properties on par with the
commercial fibers.
Related References:
1. Lakshmi, A.; Pandit, P.; Nayak, G.; Bhagwat, Y.; and Kumar, S., “Influence of Corrosion-Based Section Loss on Morphology and Tensile Capacity of Pre-Stressing Strands,” Journal of Structural Integrity and Maintenance, V. 9, No. 1, 2024. doi: 10.1080/24705314.2024.2302655
2. Bhagwat, Y.; Nayak, G.; Pandit, P.; Harithakrishnan; and Lakshmi, A., “Corrosion Analysis of RCC Beam using Simplified FEM Model,” IOP Conference Series. Earth and Environmental Science, V. 1084, No. 1, 2022, p. 012072. doi: 10.1088/1755-1315/1084/1/012072
3. Deb, S.; Mitra, N.; Maitra, S.; and Basu Majumdar, S., “Comparison of Mechanical Performance and Life Cycle Cost of Natural and Synthetic Fiber-Reinforced Cementitious Composites,” Journal of Materials in Civil Engineering, ASCE, V. 32, No. 6, 2020, p. 04020150. doi: 10.1061/(ASCE)MT.1943-5533.0003219
4. Li, V. C., and Leung, C. K., “Steady-State and Multiple Cracking of Short Random Fiber Composites,” Journal of Engineering Mechanics, ASCE, V. 118, No. 11, 1992, pp. 2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
5. Li, V. C.; Mishra, D. K.; Naaman, A. E.; Wight, J. K.; LaFave, J.; Wu, H.-C.; and Inada, Y., “On the Shear Behavior of Engineered Cementitious Composites,” Advanced Cement Based Materials, V. 1, No. 3, 1994, pp. 142-149. doi: 10.1016/1065-7355(94)90045-0
6. Li, V. C., “On Engineered Cementitious Composites ECC,” Journal of Advanced Concrete Technology, V. 1, No. 3, 2003, pp. 215-230. doi: 10.3151/jact.1.215
7. Thong, C. C.; Teo, D. C. L.; and Ng, C. K., “Application of Polyvinyl Alcohol (PVA) in Cement-Based Composite Materials: A Review of its Engineering Properties and Microstructure Behavior,” Construction and Building Materials, V. 107, 2016, pp. 172-180. doi: 10.1016/j.conbuildmat.2015.12.188
8. Shimizu, K.; Kanakubo, T.; Kanda, T.; and Nagai, S., “Shear Behavior of Steel Reinforced PVA-ECC Beams,” Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 2004, Paper No. 704.
9. Yuan, F.; Pan, J.; Xu, Z.; and Leung, C. K. Y., “A Comparison of Engineered Cementitious Composites versus Normal Concrete in Beam-Column Joints under Reversed Cyclic Loading,” Materials and Structures, V. 46, No. 1-2, 2013, pp. 145-159. doi: 10.1617/s11527-012-9890-6
10. Sivasubramanian, M. V. R., “Response and Micromechanics-Based Design of Engineered Cementitious Composite Structures,” PhD thesis, Birla Institute of Technology and Science, Pilani, India, 2011.
11. Arulanandam, P. M.; Singh, S. B.; Kanakubo, T.; and Sivasubramanian, M. V. R., “Behavior of Engineered Cementitious Composite Structural Elements – A Review,” Indian Concrete Journal, V. 94, No. 6, 2020, pp. 5-28.
12. Park, P.; Jones, R.; Castillo, L.; Vallangca, M.; and Cantu, F., “Engineered Cementitious Composites (ECC) for Applications in Texas,” Technical Report 0-7030-1, Department of Civil Engineering, The University of Texas Rio Grande Valley, Edinburg, TX, 2020.
13. Prem Kumar, N.; Chellapandian, M.; Arunachelam, N.; and Vincent, P., “Effect of Mercerization on the Chemical Characteristics of Plant-Based Natural Fibers,” Materials Today: Proceedings, V. 68, No. 5, 2022, pp. 1201-1207. doi: 10.1016/j.matpr.2022.05.319
14. Maheswaran, J.; Chellapandian, M.; Sivasubramanian, M. V. R.; Murali, G.; and Vatin, N. I., “Experimental and Numerical Investigation on the Shear Behavior of Engineered Cementitious Composite Beams with Hybrid Fibers,” Materials, V. 15, No. 14, 2022, p. 5059. doi: 10.3390/ma15145059
15. Bandelt, M. J., and Billington, S. L., “Bond Behavior of Steel Reinforcement in High-Performance Fiber-Reinforced Cementitious Composite Flexural Members,” Materials and Structures, V. 49, No. 1-2, 2016, pp. 71-86. doi: 10.1617/s11527-014-0475-4
16. Kim, Y. Y.; Kim, J. S.; Ha, G. J.; and Kim, J. K., “Influence of ECC Ductility on the Diagonal Tension Behavior (Shear Capacity) of Infill Panels,” Proceedings of the International RILEM Workshop on High-
Performance Fiber Reinforced Cementitious Composites in Structural Applications, G. Fischer and V. C. Li, eds., 2006, pp. 403-410.
17. Yin, L.; Yan, C.; Liu, S.; Zhang, J.; and Liang, M., “Shear Behavior of a Strain Hardening Cementitious Composites (SHCC)-Grooved Steel Composite Deck,” Composites Part B: Engineering, V. 160, 2019, pp. 195-204. doi: 10.1016/j.compositesb.2018.10.025
18. Arulanandam, P. M.; Sivasubramanian, M. V. R.; Chellapandian, M.; Murali, G.; and Vatin, N. I., “Analytical and Numerical Investigation of the Behavior of Engineered Cementitious Composite Members under Shear Loads,” Materials, V. 15, No. 13, 2022, p. 4640. doi: 10.3390/ma15134640
19. Meng, D.; Huang, T.; Zhang, Y. X.; and Lee, C. K., “Mechanical Behaviour of a Polyvinyl Alcohol Fiber Reinforced Engineered Cementitious Composite (PVA-ECC) Using Local Ingredients,” Construction and Building Materials, V. 141, 2017, pp. 259-270. doi: 10.1016/j.conbuildmat.2017.02.158
20. Alyousif, A.; Anil, O.; Sahmaran, M.; Lachemi, M.; Yildirim, G.; and Ashour, A. F., “Comparison of Shear Behaviour of Engineered Cementitious Composite and Normal Concrete Beams with Different Shear Span Lengths,” Magazine of Concrete Research, V. 68, No. 5, 2016, pp. 217-228. doi: 10.1680/jmacr.14.00336
21. Paegle, I., and Fischer, G., “Phenomenological Interpretation of the Shear Behavior of Reinforced Engineered Cementitious Composite Beams,” Cement and Concrete Composites, V. 73, 2016, pp. 213-225. doi: 10.1016/j.cemconcomp.2016.07.018
22. Ismail, M. K., and Hassan, A. A. A., “Influence of Fibre Type on the Shear Behaviour of Engineered Cementitious Composite Beams,” Magazine of Concrete Research, V. 73, No. 9, 2021, pp. 464-475. doi: 10.1680/jmacr.19.00172
23. Ma, H.; Yi, C.; and Wu, C., “Review and Outlook on the Durability of Engineered Cementitious Composite (ECC),” Construction and Building Materials, V. 287, 2021, p. 122719. doi: 10.1016/j.conbuildmat.2021.122719
24. Lakshmi, A.; Pandit, P.; Nayak, G.; Bhagwat, Y.; and Gundlapalli, P., “Performance Evaluation of Low Volume Synthetic Fibres in Pozzolanic Cement Concrete,” Cogent Engineering, V. 11, No. 1, 2024, p. 2319398. doi: 10.1080/23311916.2024.2319398
25. Bhagwat, Y.; Nayak, G.; Pandit, P.; and Lakshmi, A., “Effect of Polypropylene Fibres on Strength and Durability Performance of M-Sand Self-Compacting Concrete,” Cogent Engineering, V. 10, No. 1, 2023, p. 2233783. doi: 10.1080/23311916.2023.2233783
26. Lakshmi, A.; Pandit, P.; Bhagwat, Y.; and Nayak, G., “A Review on Efficiency of Polypropylene Fiber Reinforced Concrete,” Sustainability Trends and Challenges in Civil Engineering: Select Proceedings of CTCS 2020, L. Nandagiri, M. C. Narasimhan, S. Marathe, and S. V. Dinesh, eds., Springer, Singapore, 2022, pp. 799-812.
27. Chandrasekar, M.; Ishak, M. R.; Sapuan, S. M.; Leman, Z.; and Jawaid, M., “A Review on the Characterisation of Natural Fibers and their Composites after Alkali Treatment and Water Absorption,” Plastics, Rubber and Composites, V. 46, No. 3, 2017, pp. 119-136. doi: 10.1080/14658011.2017.1298550
28. Brindha, U.; Chellapandian, M.; and Maheswaran, J., “Retrofitting of Severely Damaged RC Beams Using Novel Bio-Composite-Based Mat-Matrix System,” Structures, V. 63, 2024, p. 106480. doi: 10.1016/j.istruc.2024.106480
29. Chellapandian, M.; Maheswaran, J.; and Arunachelam, N., “Thermal and Mechanical Properties of a Sustainable Bio-Flax Fiber Based Light-Weight Aggregate Concrete,” Magazine of Concrete Research, V. 76, No. 7, 2024, pp. 350-365. doi: 10.1680/jmacr.23.00080
30. Onuaguluchi, O., and Banthia, N., “Plant-Based Natural Fiber Reinforced Cement Composites: A Review,” Cement and Concrete Composites, V. 68, 2016, pp. 96-108. doi: 10.1016/j.cemconcomp.2016.02.014
31. Li, X.; Tabil, L. T.; and Panigrahi, S., “Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review,” Journal of Polymers and the Environment, V. 15, No. 1, 2007, pp. 25-33. doi: 10.1007/s10924-006-0042-3
32. Akil, H. M.; Omar, M. F.; Mazuki, A. A. M.; Safiee, S.; Ishak, Z. A. M.; and Abu Bakar, A., “Kenaf Fiber Reinforced Composites: A Review,” Materials & Design, V. 32, No. 8-9, 2011, pp. 4107-4121. doi: 10.1016/j.matdes.2011.04.008
33. Çomak, B.; Bideci, A.; and Salli Bideci, Ö., “Effects of Hemp Fibers on Characteristics of Cement-Based Mortar,” Construction and Building Materials, V. 169, 2018, pp. 794-799. doi: 10.1016/j.conbuildmat.2018.03.029
34. Chellapandian, M.; Arunachelam, N.; Maheswaran, J.; and Prem Kumar, N., “Shear Behavior of Low-Cost and Sustainable Bio-Fiber Based Engineered Cementitious Composite Beams –Experimental and Theoretical Studies,” Journal of Building Engineering, V. 84, 2024, p. 108497. doi: 10.1016/j.jobe.2024.108497
35. Hari, M. N. T.; Ragul, P.; Chellapandian, M.; and Vincent, P., “Experimental and Finite Element Studies on the Flexural Behavior of Optimized Green Concrete Using GGBS and Pond Ash,” Materials Today: Proceedings, V. 68, No. 5, 2022, pp. 1466-1471. doi: 10.1016/j.matpr.2022.07.087
36. Maheswaran, J.; Chellapandian, M.; Arunachelam, N.; and Hari, M. N. T., “Thermal and Durability Characteristics of Optimized Green Concrete Developed Using Slag Powder and Pond Ash,” Materials Research Express, V. 10, No. 9, 2023, p. 095503. doi: 10.1088/2053-1591/acf7b3
37. Mirhosseini, S. R.; Fadaee, M.; Tabatabaei, R.; and Fadaee, M. J., “Mechanical Properties of Concrete with Sarcheshmeh Mineral Complex Copper Slag as a Part of Cementitious Materials,” Construction and Building Materials, V. 134, 2017, pp. 44-49. doi: 10.1016/j.conbuildmat.2016.12.024
38. Fadaee, M.; Mirhosseini, R.; Tabatabaei, R.; and Fadaee, M. J., “Investigation on Using Copper Slag as Part of Cementitious Materials in Self-Compacting Concrete,” Asian Journal of Civil Engineering, V. 16, No. 3, 2015, pp. 368-381.
39. Arunachelam, N.; Maheswaran, J.; Chellapandian, M.; and Ozbakkaloglu, T., “Effective Utilization of Copper Slag for the Production of Geopolymer Concrete with Different NaOH Molarity under Ambient Curing Conditions,” Sustainability, V. 14, No. 23, 2022, p. 16300. doi: 10.3390/su142316300
40. Arunachelam, N.; Maheswaran, J.; Chellapandian, M.; Murali, G.; and Vatin, N. I., “Development of High-Strength Geopolymer Concrete Incorporating High-Volume Copper Slag and Micro Silica,” Sustainability, V. 14, No. 13, 2022, p. 7601. doi: 10.3390/su14137601
41. Arunachelam, N.; Chellapandian, M.; Maheswaran, J.; and Murali, G., “Strength and Durability Properties of Alkali-Activated Concrete Comprising Glass Fibres,” Advanced Fiber-Reinforced Alkali-Activated Composites: Design, Mechanical Properties, and Durability, A. Çevik and A. Niş, eds., Elsevier, Amsterdam, the Netherlands, 2023, pp. 359-380.
42. ASTM C618-19, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2019, 5 pp.
43. IS 383:2016, “Coarse and Fine Aggregate for Concrete – Specification,” Bureau of Indian Standards, New Delhi, India, 2016.
44. Petroudy, S. R. D., “Physical and Mechanical Properties of Natural Fibers,” Advanced High Strength Natural Fibre Composites in Construction, M. Fan and F. Fu, eds., 2017, pp. 59-83.
45. Shah, I.; Jing, L.; Fei, Z. M.; Yuan, Y. S.; Farooq, M. U.; and Kanjana, N., “A Review on Chemical Modification by Using Sodium Hydroxide (NaOH) to Investigate the Mechanical Properties of Sisal, Coir, and Hemp Fiber Reinforced Concrete Composites,” Journal of Natural Fibers, V. 19, No. 13, 2022, pp. 5133-5151. doi: 10.1080/15440478.2021.1875359
46. Mukherjee, P. S., and Satyanarayana, K. G., “Structure and Properties of Some Vegetable Fibres: Part 2, Pineapple Fibre (Anannus Comosus),” Journal of Materials Science, V. 21, 1986, pp. 51-56. doi: 10.1007/BF01144698
47. Islam, M. R.; Beg, M. D. H.; and Gupta, A., “Characterization of Alkali-Treated Kenaf Fiber-Reinforced Recycled Polypropylene Composites,” Journal of Thermoplastic Composite Materials, V. 27, No. 7, 2014, pp. 909-932. doi: 10.1177/0892705712461511
48. ASTM D3822/D3822M-14(2020), “Standard Test Method for Tensile Properties of Single Textile Fibers,” ASTM International, West Conshohocken, PA, 2020, 11 pp.
49. Li, V. C., Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure, Springer, Berlin, Germany, 2019.
50. JSCE, “Recommendations for Design and Construction of High-
Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks,” Japan Society of Civil Engineers, Tokyo, Japan, 2008, 113 pp.
51. Zukowski, B.; Silva, F. D. A.; and Filho, R. D. T., “Design of Strain Hardening Cement-Based Composites with Alkali Treated Natural Curaua Fiber,” Cement and Concrete Composites, V. 89, 2018, pp. 150-159. doi: 10.1016/j.cemconcomp.2018.03.006
52. Castoldi, R. D.; De Souza, L. M. S.; Souto, F.; Liebscher, M.; Mechtcherine, V.; and Silva, F. D. A., “Effect of Alkali Treatment on
Physical–Chemical Properties of Sisal Fibers and Adhesion Towards Cement-Based Matrices,” Construction and Building Materials, V. 345, 2022, p. 128363. doi: 10.1016/j.conbuildmat.2022.128363
53. Teixeira, F. P., and Silva, F. A., “On the Use of Natural Curau´A Reinforced Cement-Based Composites for Structural Applications,” Cement and Concrete Composites, V. 114, 2020, p. 103775. doi: 10.1016/j.cemconcomp.2020.103775
54. Fidelis, M. E. A.; Pereira, T. V. C.; Gomes, O. F. M.; Silva, F. D.; and Filho, R. D. T., “The Effect of Fiber Morphology on the Tensile Strength of Natural Fibers,” Journal of Materials Research and Technology, V. 2, No. 2, 2013, pp. 149-157. doi: 10.1016/j.jmrt.2013.02.003
55. Ferreira, S. R.; Pepe, M.; Martinelli, E.; Silva, F. D.; and Filho, R. D. T., “Influence of Natural Fibers Characteristics on the Interface Mechanics with Cement-Based Matrices,” Composites Part B: Engineering, V. 140, 2018, pp. 183-196. doi: 10.1016/j.compositesb.2017.12.016
56. ASTM E1252-98(2007), “Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis,” ASTM International, West Conshohocken, PA, 2007, 13 pp.
57. Senthilkumar, K.; Rajini, N.; Saba, N.; Chandrasekar, M.; Jawaid, M.; and Siengchin, S., “Effect of Alkali Treatment on Mechanical and Morphological Properties of Pineapple Leaf Fibre/Polyester Composites,” Journal of Polymers and the Environment, V. 27, No. 6, 2019, pp. 1191-1201. doi: 10.1007/s10924-019-01418-x
58. Asim, M.; Jawaid, M.; Abdan, K.; and Ishak, M. R., “Effect of Alkali and Silane Treatments on Mechanical and Fibre-Matrix Bond Strength of Kenaf and Pineapple Leaf Fibres,” Journal of Bionic Engineering, V. 13, No. 3, 2016, pp. 426-435. doi: 10.1016/S1672-6529(16)60315-3
59. Pickering, K. L.; Efendy, M. G. A.; and Le, T. M., “A Review of Recent Developments in Natural Fiber Composites and their Mechanical Performance,” Composites Part A: Applied Science and Manufacturing, V. 83, 2016, pp. 98-112. doi: 10.1016/j.compositesa.2015.08.038
60. Fauzi, A.; Nuruddin, M. F.; Malkawi, A. B.; and Abdullah, M. M. B., “Study of Fly Ash Characterization as a Cementitious Material,” Procedia Engineering, V. 148, 2016, pp. 487-493. doi: 10.1016/j.proeng.2016.06.535
61. Kafi, M. A.; Sadeghi-Nik, A.; Bahari, A.; Sadeghi-Nik, A.; and Mirshafiei, E., “Microstructural Characterization and Mechanical Properties of Cementitious Mortar Containing Montmorillonite Nanoparticles,” Journal of Materials in Civil Engineering, ASCE, V. 28, No. 12, 2016, p. 04016155. doi: 10.1061/(ASCE)MT.1943-5533.0001671