Title:
Use of Metakaolin and Slag Geopolymer Adhesives for Fixing Tiles
Author(s):
Joseph Jean Assaad and Marianne Saba
Publication:
Materials Journal
Volume:
121
Issue:
3
Appears on pages(s):
3-14
Keywords:
blast-furnace slag; bond strength; ceramic tiles; geopolymer; metakaolin; polymer-modified mortar; thixotropy
DOI:
10.14359/51740702
Date:
5/1/2024
Abstract:
This paper assesses the suitability of geopolymers (GPs) for use
as adhesives for ceramic tile fixing, including their compliance
to the relevant EN 12004 specification. Two series prepared with
different percentages of metakaolin (MK), blast-furnace slag
(BFS), and limestone materials activated by an alkaline NaOH/
Na2SiO3 solution are investigated. Tested properties included the
thixotropy, setting, compressive strength, open time, and adhesion
bond strength under different exposure conditions (that is, dry, wet,
heat, or freezing-and-thawing cycles). Compared to cement-based
mortars containing adjusted proportions of cellulose and redispersible
polymers, the GPs exhibited higher thixotropy, reflecting
additional energy for spreading the material over the substrate,
yet better maintenance of the alternating patterns of ripples and
grooves at rest. The bond strengths tested under different exposure
conditions were remarkably high for the MK-based GP, given the
fine MK particle sizes that foster geopolymerization and crosslinking
of solid bonds in the hardened structure. The BFS-based GP
exhibited relatively lower bond strengths (compared to MK) due to
coarser particles. Such results can be of interest to civil engineers
and manufacturers of ready-to-use building materials that aim at
reducing the portland cement footprint while assuring performance
and sustainability of tiling applications.
Related References:
1. Assaad, J. J., “Development of Polymer-Modified Cement for Adhesive and Repair Applications,” Construction and Building Materials, V. 163, 2018, pp. 139-148. doi: 10.1016/j.conbuildmat.2017.12.103
2. Mansur, A. A. P.; Santos, D. B.; and Mansur, H. S., “A Microstructural Approach to Adherence Mechanism of Poly(Vinyl Alcohol) Modified Cement Systems to Ceramic Tiles,” Cement and Concrete Research, V. 37, No. 2, 2007, pp. 270-282. doi: 10.1016/j.cemconres.2006.11.011
3. Jenni, A.; Holzer, L.; Zurbriggen, R.; and Herwegh, M., “Influence of Polymers on Microstructure and Adhesive Strength of Cementitious Tile Adhesive Mortars,” Cement and Concrete Research, V. 35, No. 1, 2005, pp. 35-50. doi: 10.1016/j.cemconres.2004.06.039
4. Salman, M. N.; Ma, G.; Ijaz, N.; and Wang, L., “Importance and Potential of Cellulosic Materials and Derivatives in Extrusion-Based 3D Concrete Printing (3DCP): Prospects and Challenges,” Construction and Building Materials, V. 291, 2021, p. 123281. doi: 10.1016/j.conbuildmat.2021.123281
5. Wan, Q.; Wang, Z.; Huang, T.; and Wang, R., “Water Retention Mechanism of Cellulose Ethers in Calcium Sulfoaluminate Cement-Based Materials,” Construction and Building Materials, V. 301, 2021, p. 124118. doi: 10.1016/j.conbuildmat.2021.124118
6. Betioli, A. M.; Filho, J. H.; Cincotto, M. A.; Gleize, P. J. P.; and Pileggi, R. G., “Chemical Interaction Between EVA and Portland Cement Hydration at Early-Age,” Construction and Building Materials, V. 23, No. 11, 2009, pp. 3332-3336. doi: 10.1016/j.conbuildmat.2009.06.033
7. Assaad, J. J., “Feasibility of Specialty Cement Possessing Improved Bond Properties,” Advances in Cement Research, V. 29, No. 7, 2017, pp. 302-312. doi: 10.1680/jadcr.17.00031
8. Zampini, D.; Shah, S. P.; and Jennings, H. M., “Early Age Microstructure of the Paste–Aggregate Interface and its Evolution,” Journal of Materials Research, V. 13, No. 7, 1998, pp. 1888-1898. doi: 10.1557/JMR.1998.0268
9. Dimmig-Osburg, A.; Pietsch, I.; and Pietsch, J., “Polymer Additives and Their Influence on the Cement Microstructure in the Early Stages of Hardening,” ZKG International, V. 59, 2006, pp. 72-83.
10. Su, Z.; Sujata, K.; Bijen, J. M. J. M.; Jennings, H. M.; and Fraaij, A. L. A., “The Evolution of the Microstructure in Styrene Acrylate Polymer Modified Cement Pastes at the Early Stage of Cement Hydration,” Advanced Cement Based Materials, V. 3, No. 3-4, 1996, pp. 87-93. doi: 10.1016/S1065-7355(96)90041-3
11. Jenni, A.; Zurbriggen, R.; Holzer, L.; and Herwegh, M., “Changes in Microstructures and Physical Properties of Polymer-Modified Mortars During Wet Storage,” Cement and Concrete Research, V. 36, No. 1, 2006, pp. 79-90. doi: 10.1016/j.cemconres.2005.06.001
12. Jenni, A.; Herwegh, M.; Zurbriggen, R.; Aberle, T.; and Holzer, L., “Quantitative Microstructure Analysis of Polymer-Modified Mortars,” Journal of Microscopy, V. 212, No. 2, 2003, pp. 186-196. doi: 10.1046/j.1365-2818.2003.01230.x
13. Slowik, V.; Schmidt, M.; and Fritzsch, R., “Capillary Pressure in Fresh Cement-Based Materials and Identification of the Air Entry Value,” Cement and Concrete Composites, V. 30, No. 7, 2008, pp. 557-565. doi: 10.1016/j.cemconcomp.2008.03.002
14. Petit, J. Y., and Wirquin, E., “Evaluation of Various Cellulose Ethers Performance in Ceramic Tile Adhesive Mortars,” International Journal of Adhesion and Adhesives, V. 40, 2013, pp. 202-209. doi: 10.1016/j.ijadhadh.2012.09.007
15. EN 12004-1:2017, “Adhesives for Ceramic Tiles – Part 1: Requirements, Assessment and Verification of Constancy of Performance, Classification and Marking,” European Committee for Standardization, Brussels, Belgium, 2017.
16. Wetzel, A., “Mechanisms of Shrinkage and Adhesion Failure of Tile Adhesive Mortars,” PhD thesis, University of Bern, Bern, Switzerland, 2010.
17. Silva, D. A.; Roman, H. R.; and Gleize, P. J. P., “Evidences of Chemical Interaction between EVA and Hydrating Portland Cement,” Cement and Concrete Research, V. 32, No. 9, 2002, pp. 1383-1390. doi: 10.1016/S0008-8846(02)00805-0
18. Yiu, C. Y.; Ho, D. C. W.; and Lo, S. M., “Weathering Effects on External Wall Tiling Systems,” Construction and Building Materials, V. 21, No. 3, 2007, pp. 594-600. doi: 10.1016/j.conbuildmat.2005.11.002
19. Bonapasta, F.; Buda, F.; Colombet, P.; and Guerrini, G., “Cross-Linking of Poly(Vinyl Alcohol) Chains by Ca Ions in Macro-Defect-Free Cements,” Chemistry of Materials, V. 14, No. 3, 2002, pp. 1016-1022. doi: 10.1021/cm010573q
20. Firdous, R., and Stephan, D., “Natural Pozzolan Based Geopolymers: A Review on Mechanical, Microstructural and Durability Characteristics,” Construction and Building Materials, V. 190, 2018, pp. 1251-1263. doi: 10.1016/j.conbuildmat.2018.09.191
21. Mustafa Al Bakri, A. M.; Kamarudin, H.; Bnhussain, M.; Rafiza, A. R.; and Zarina, Y., “Effect of Na2SiO3/NaOH Ratios and NaOH Molarities on Compressive Strength of Fly-Ash-Based Geopolymer,” ACI Materials Journal, V. 109, No. 5, Sept.-Oct. 2012, pp. 503-508.
22. Laskar, A. I., and Bhattacharjee, R., “Rheology of Fly-Ash-Based Geopolymer Concrete,” ACI Materials Journal, V. 108, No. 5, Sept.-Oct. 2011, pp. 536-542. doi: 10.14359/51683263
23. Kong, D. L.; Sanjayan, J. G.; and Sagoe-Crentsil, K., “Comparative Performance of Geopolymers Made with Metakaolin and Fly Ash after Exposure to Elevated Temperatures,” Cement and Concrete Research, V. 37, No. 12, 2007, pp. 1583-1589. doi: 10.1016/j.cemconres.2007.08.021
24. Mohd Ali, A. Z.; Sanjayan, J.; and Guerrieri, M., “Performance of Geopolymer High Strength Concrete Wall Panels and Cylinders When Exposed to a Hydrocarbon Fire,” Construction and Building Materials, V. 137, 2017, pp. 195-207. doi: 10.1016/j.conbuildmat.2017.01.099
25. Hwalla, J.; Saba, M.; and Assaad, J. J., “Suitability of Metakaolin-Based Geopolymers for Underwater Applications,” Materials and Structures, V. 53, No. 119, 2020, pp. 1-14. doi: 10.1617/s11527-020-01546-0
26. Saba, M., and Assaad, J. J., “Effect of Recycled Fine Aggregates on Performance of Geopolymer Masonry Mortars,” Construction and Building Materials, V. 279, 2021, p. 122461. doi: 10.1016/j.conbuildmat.2021.122461
27. Palomo, A.; Banfill, P. F. G.; Fernández-Jiménez, A.; and Swift, D. S., “Properties of Alkali-Activated Fly Ashes Determined from Rheological Measurements,” Advances in Cement Research, V. 17, No. 4, 2015, pp. 143-151. doi: 10.1680/adcr.2005.17.4.143
28. Favier, A.; Hot, J.; Habert, G.; Roussel, N.; and de Lacaillerie, J. B. E., “Flow Properties of MK-Based Geopolymer Pastes. A Comparative Study with Standard Portland Cement Pastes,” Soft Matter, V. 10, No. 8, 2014, pp. 1134-1141. doi: 10.1039/c3sm51889b
29. Palacios, M.; Banfill, P. F. G.; and Puertas, F., “Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture,” ACI Materials Journal, V. 105, No. 2, Mar.-Apr. 2008, pp. 140-148.
30. Rashad, A. M., “A Comprehensive Overview About the Influence of Different Admixtures and Additives on the Properties of Alkali-Activated Fly Ash,” Materials & Design, V. 53, 2014, pp. 1005-1025. doi: 10.1016/j.matdes.2013.07.074
31. Assaad, J. J., and Saba, M., “Suitability of Metakaolin-Based Geopolymers for Masonry Lastering,” ACI Materials Journal, V. 117, No. 6, Nov. 2020, pp. 269-279. doi: 10.14359/51725991
32. Alonso, S., and Palomo, A., “Alkaline Activation of Metakaolin and Calcium Hydroxide Mixtures: Influence of Temperature, Activator Concentration and Solids Ratio,” Materials Letters, V. 47, No. 1-2, 2001, pp. 55-62. doi: 10.1016/S0167-577X(00)00212-3
33. Rovnaník, P., “Effect of Curing Temperature on the Development of Hard Structure of Metakaolin-Based Geopolymer,” Construction and Building Materials, V. 24, No. 7, 2010, pp. 1176-1183. doi: 10.1016/j.conbuildmat.2009.12.023
34. Lemougna, P. N.; MacKenzie, K. J. D.; and Melo, U. C., “Synthesis and Thermal Properties of Inorganic Polymers (Geopolymers) for Structural and Refractory Applications from Volcanic Ash,” Ceramics International, V. 37, No. 8, 2011, pp. 3011-3018. doi: 10.1016/j.ceramint.2011.05.002
35. Chen, L.; Wang, Z.; Wang, Y.; and Feng, J., “Preparation and Properties of Alkali Activated Metakaolin-Based Geopolymer,” Materials (Basel), V. 9, No. 767, 2016, pp. 1-12. doi: 10.3390/ma9090767
36. Rakhimova, N. R., and Rakhimov, R. Z., “Reaction Products, Structure and Properties of Alkali-Activated Metakaolin Cements Incorporated with Supplementary Materials – A Review,” Journal of Materials Research and Technology, V. 8, No. 1, 2019, pp. 1522-1531. doi: 10.1016/j.jmrt.2018.07.006
37. Zhang, Y. S.; Sun, W.; and Li, J. Z., “Hydration Process of Interfacial Transition in Potassium Polysialate (K-PSDS) Geopolymer Concrete,” Magazine of Concrete Research, V. 57, No. 1, 2005, pp. 33-38. doi: 10.1680/macr.2005.57.1.33
38. Lingyu, T.; Dongpo, H.; Jianing, Z.; and Hongguang, W., “Durability of Geopolymers and Geopolymer Concretes: A Review,” Reviews on Advanced Materials Science, V. 60, No. 1, 2021, pp. 1-14. doi: 10.1515/rams-2021-0002
39. Fernández-Jiménez, A., and Puertas, F., “The Alkali-Silica Reaction in Alkali-Activated Granulated Slag Mortars with Reactive Aggregate,” Cement and Concrete Research, V. 32, No. 7, 2002, pp. 1019-1024. doi: 10.1016/S0008-8846(01)00745-1
40. Bakharev, T.; Sanjayan, J. G.; and Cheng, Y. B., “Resistance of Alkali-
Activated Slag Concrete to Acid Attack,” Cement and Concrete Research, V. 33, No. 10, 2003, pp. 1607-1611. doi: 10.1016/S0008-8846(03)00125-X
41. Ariffin, M. A. M.; Bhutta, M. A. R.; Hussin, M. W.; Mohd Tahir, M.; and Aziah, N., “Sulfuric Acid Resistance of Blended Ash Geopolymer Concrete,” Construction and Building Materials, V. 43, 2013, pp. 80-86. doi: 10.1016/j.conbuildmat.2013.01.018
42. ASTM C989/C989M-18, “Standard Specification for Slag Cement for Use in Concrete and Mortars,” ASTM International, West Conshohocken, PA, 2018.
43. ASTM C128-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate,” ASTM International, West Conshohocken, PA, 2015.
44. ASTM C117-17, “Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing,” ASTM International, West Conshohocken, PA, 2017.
45. EN 14411, “Carreaux céramiques - Définitions, classification, caractéristiques, évaluation et vérification de la constance de performance et marquage,” European Committee for Standardization, Brussels, Belgium, 2016.
46. El Sakka, F.; Assaad, J. J.; Hamzeh, F.; and Nakhoul, C., “Thixotropy and Interfacial Bond Strengths of Polymer-Modified Printed Mortars,” Materials and Structures, V. 52, No. 79, 2019, p. 79. doi: 10.1617/s11527-019-1356-7
47. Assaad, J.; Harb, J.; and Maalouf, Y., “Effect of Vane Configuration on Yield Stress Measurements of Cement Pastes,” Journal of Non-Newtonian Fluid Mechanics, V. 230, 2016, pp. 31-42. doi: 10.1016/j.jnnfm.2016.01.002
48. ASTM C266-99, “Standard Test Method for Time of Setting of Hydraulic-Cement Paste by Gillmore Needles,” ASTM International, West Conshohocken, PA, 1999.
49. EN 196-1, “Méthodes d’essais des ciments - Partie 1: détermination des résistances,” European Committee for Standardization, Brussels, Belgium, 2016.
50. EN 1348, “Adhesives for Tiles — Determination of Tensile Adhesion Strength for Cementitious Adhesives,” European Committee for Standardization, Brussels, Belgium, 2017.
51. Assaad, J. J.; Gerges, N.; Khayat, K. H.; Lattouf, N.; and Mansour, J., “Assessment of Bond Strength of Underwater Polymer-Modified Concrete,” ACI Materials Journal, V. 116, No. 6, Nov. 2019, pp. 169-178. doi: 10.14359/51716982
52. EN 1346, “Adhesives for Tiles — Determination of Open Time,” European Committee for Standardization, Brussels, Belgium, 2017.
53. Liu, J.; Wang, K.; Zhang, Q.; Han, F.; Sha, F.; and Liu, J., “Influence of Superplasticizer Dosage on the Viscosity of Cement Paste with Low Water-Binder Ratio,” Construction and Building Materials, V. 149, 2017, pp. 359-366. doi: 10.1016/j.conbuildmat.2017.05.145
54. Khayat, K. H., and Assaad, J., “Use of Thixotropy-Enhancing Agent to Reduce Formwork Pressure Exerted by Self-Consolidating Concrete,” ACI Materials Journal, V. 105, No. 1, Jan.-Feb. 2008, pp. 88-96. doi: 10.14359/19211
55. Djobo, J. N. Y., and Stephan, D., “Understanding the Binder Chemistry, Microstructure, and Physical Properties of Volcanic Ash Phosphate Geopolymer Binder,” Journal of the American Ceramic Society, V. 105, No. 5, 2022, pp. 3226-3237. doi: 10.1111/jace.18333
56. Heah, C. Y.; Kamarudin, H.; Al Bakri, A. M. M.; Binhussain, M.; Luqman, M.; and Nizar, I. K., “Effect of Curing Profile on Kaolin-Based Geopolymers,” Physics Procedia, V. 22, 2011, pp. 305-311. doi: 10.1016/j.phpro.2011.11.048
57. Kani, E. N., and Allahverdi, A., “Effects of Curing Time and Temperature on Strength Development of Inorganic Polymeric Binder Based on Natural Pozzolan,” Journal of Materials Science, V. 44, No. 12, 2009, pp. 3088-3097. doi: 10.1007/s10853-009-3411-1
58. Aygörmez, Y.; Canpolat, O.; Al-Mashhadani, M. M.; and Uysal, M., “Elevated Temperature, Freezing-Thawing and Wetting-Drying Effects on Polypropylene Fiber Reinforced Metakaolin Based Geopolymer Composites,” Construction and Building Materials, V. 235, 2020, p. 117502. doi: 10.1016/j.conbuildmat.2019.117502
59. Pilehvar, S.; Szczotok, A. M.; Rodriguez, J. F.; Valentini, L.; Lanzon, M.; Pamies, R.; and Kjoniksen, A.-L., “Effect of Freeze-Thaw Cycles on the Mechanical Behavior of Geopolymer Concrete and Portland Cement Concrete Containing Micro-Encapsulated Phase Change Materials,” Construction and Building Materials, V. 200, 2019, pp. 94-103. doi: 10.1016/j.conbuildmat.2018.12.057
60. Shamsa, M. H.; Al-Shathr, B. S.; and Al-Attar, T. S., “Performance of Geopolymer Concrete Exposed to Freezing and Thawing Cycles,” Engineering and Technology Journal, V. 37 Part A, No. 3, 2018, pp. 78-84. 10.30684/etj.37.3A.1
61. Assaad, J. J.; Hamzeh, F.; and Hamad, B., “Qualitative Assessment of Interfacial Bonding in 3D Printing Concrete Exposed to Frost Attack,” Case Studies in Construction Materials, V. 13, 2020, p. e00357. doi: 10.1016/j.cscm.2020.e00357