Title:
Alternative Punching Shear Design Methods for Concrete Slabs on Rectangular Columns
Author(s):
Graeme J. Milligan, Maria Anna Polak, and Cory Zurell
Publication:
Structural Journal
Volume:
122
Issue:
2
Appears on pages(s):
21-36
Keywords:
column aspect ratio; design codes; elongated supports; finite element analysis; punching shear; rectangular columns; reinforced concrete slabs; slab-wall connections
DOI:
10.14359/51739194
Date:
3/1/2025
Abstract:
Worldwide punching shear design provisions for interior slab-column connections subjected to concentric shear differ greatly in how to account for column rectangularity (aspect ratio). In some, a reduced nominal shear capacity along the critical perimeter is assumed, whereas an effective or reduced critical perimeter is assumed in others. In this paper, three alternative methods to estimate the concentric punching shear capacity of interior rectangular slab-column connections without shear reinforcement, which implicitly account for the influence of column rectangularity and the ratio of the minimum column dimension to the effective slab depth, are presented. The accuracy of the proposed methods is studied through comparisons to 76 nonlinear finite element models and 86 experiments. The predicted punching capacities from the proposed methods and ACI 318-19 are also compared.
Related References:
1. Sagaseta, J.; Tassinari, L.; Fernández Ruiz, M.; and Muttoni, A., “Punching of Flat Slabs Supported on Rectangular Columns,” Engineering Structures, V. 77, 2014, pp. 17-33. doi: 10.1016/j.engstruct.2014.07.007
2. Setiawan, A.; Vollum, R. L.; Macorini, L.; and Izzuddin, B. A., “Punching of RC Slabs without Transverse Reinforcement Supported on Elongated Columns,” Structures, V. 27, 2020, pp. 2048-2068. doi: 10.1016/j.istruc.2020.08.017
3. Milligan, G. J.; Polak, M. A.; and Zurell, C., “Finite Element Analysis of Punching Shear Behaviour of Concrete Slabs Supported on Rectangular Columns,” Engineering Structures, V. 224, 2020, p. 111189. doi: 10.1016/j.engstruct.2020.111189
4. Milligan, G. J.; Polak, M. A.; and Zurell, C., “Impact of Column Rectangularity on Punching Shear Strength - Code Predictions Versus FEA,” Journal of Structural Engineering, ASCE, V. 147, No. 2, 2021, p. 04020331. doi: 10.1061/(ASCE)ST.1943-541X.0002889
5. Setiawan, A.; Vollum, R. L.; Macorini, L.; and Izzuddin, B. A., “Punching Shear Design of RC Flat Slabs Supported on Wall Corners,” Structural Concrete, V. 21, No. 3, 2020, pp. 859-874. doi: 10.1002/suco.201900514
6. Milligan, G. J.; Polak, M. A.; and Zurell, C., “Finite Element Analysis of Punching Shear Behavior of Reinforced Concrete Slabs Supported on Walls,” Structural Concrete, V. 23, No. 2, 2022, pp. 1118-1133. doi: 10.1002/suco.202100692
7. Hawkins, N. M.; Fallsen, H. B.; and Hinojosa, R. C., “Influence of Column Rectangularity on the Behavior of Flat Plate Structures,” Cracking, Deflection and Ultimate Load of Concrete Slab Systems, SP-30, American Concrete Institute, Farmington Hills, MI, 1971, pp. 127-146.
8. Oliveira, D. R.; Regan, P. E.; and Melo, G. S., “Punching Resistance of RC Slabs with Rectangular Columns,” Magazine of Concrete Research, V. 56, No. 3, 2004, pp. 123-138. doi: 10.1680/macr.2004.56.3.123
9. Teng, S.; Cheong, H. K.; Kuang, K. L.; and Geng, J. Z., “Punching Shear Strength of Slabs with Openings and Supported on Rectangular Columns,” ACI Structural Journal, V. 101, No. 5, Sept.-Oct. 2004, pp. 678-687.
10. Vanderbilt, M. D., “Shear Strength of Continuous Plates,” Journal of the Structural Division, ASCE, V. 98, No. 5, 1972, pp. 961-973. doi: 10.1061/JSDEAG.0003248
11. Al-Yousif, A. T., and Regan, P. E., “Punching Resistance of RC Slabs Supported by Large or Elongated Columns,” Structural Engineering, V. 81, No. 5, 2003, pp. 30-34.
12. Anggadjaja, E., and Teng, S., “Edge-Column Slab Connections under Gravity and Lateral Loading,” ACI Structural Journal, V. 105, No. 5, Sept.-Oct. 2008, pp. 541-551.
13. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19) (Reapproved 2022),” American Concrete Institute, Farmington Hills, MI, 2019, 624 pp.
14. EN 1992-1-1(2004), “Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings,” European Committee for Standardization, Brussels, Belgium, 2004.
15. fib, “Model Code for Concrete Structures 2010,” fédération internationale du béton, Lausanne, Switzerland, 2013.
16. Moe, J., “Shearing Strength of Reinforced Concrete Slabs and Footings under Concentrated Loads,” Portland Cement Association, Skokie, IL, 1961.
17. Joint ASCE-ACI Committee 426. “The Shear Strength of Reinforced Concrete Members - Slabs,” Journal of the Structural Division, ASCE, V. 100, No. 8, 1974, pp. 1543-1591. doi: 10.1061/JSDEAG.0003838
18. Mowrer, R. D., and Vanderbilt, M. D., “Shear Strength of Lightweight Aggregate Reinforced Concrete Flat Plates,” ACI Journal Proceedings, V. 64, No. 11, Nov. 1967, pp. 722-729.
19. Einpaul, J.; Bujnak, J.; Fernández Ruiz, M.; and Muttoni, A., “Study on Influence of Column Size and Slab Slenderness on Punching Strength,” ACI Structural Journal, V. 113, No. 1, Jan.-Feb. 2016, pp. 135-146. doi: 10.14359/51687945
20. Milligan, G. J.; Polak, M. A.; and Zurell, C., “Punching Shear Design Methods for Reinforced Concrete Slab-Wall Connections,” ACI Structural Journal, 2025, accepted for publication.
21. Comité Euro-International Du Béton, “CEB-FIP Model Code for Concrete Structures,” Bulletin D’Information N. 124/125-E, V. II, Comité Euro-International Du Béton, Paris, France, 1978.
22. ENV 1992-1-1: 1991, “Eurocode 2 Design of Concrete Structures - Part 1: General Rules and Rules for Buldings (English Language Version),” British Standard Institute, London, UK, 1993.
23. DIN EN 1992-1-1/NA:2013-04, Nationaler Anhang – National festgelegte Parameter – Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken – Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, Deutsche Fassung, 2013. (in German).
24. CEN/TC 250, “Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules - Rules for Buildings, Bridges and Civil Engineering Structures (prEN 1992-1-1:2021),” European Committee for Standardization, Brussels, Belgium, 2021.
25. Sagaseta, J.; Muttoni, A.; Fernández Ruiz, M.; and Tassinari, L., “Non-Axis-Symmetrical Punching Shear around Internal Columns of RC Slabs without Transverse Reinforcement,” Magazine of Concrete Research, V. 63, No. 6, 2011, pp. 441-457. doi: 10.1680/macr.10.00098
26. Ospina, C. E.; Birkle, G.; Widianto, Y. W.; Fernando, S. R.; Fernando, S.; Catlin, A. C.; and Pujol, S., “NEES: ACI 445 Punching Shear Collected Databank,” 2015.
27. Paiva, O. S.; Ferreira, M. P.; Oliveira, D. C.; Lima Neto, A. F.; and Teixeira, M. R., “Influence of the Column Rectangularity Index and of the Boundary Conditions in the Punching Resistance of Slab-Column Connections,” Revista IBRACON de Estruturas e Materiais, V. 8, No. 3, 2015, pp. 260-295. doi: 10.1590/S1983-41952015000300003
28. Regan, P., and Rezai-Jorabi, H., “Shear Resistance of One-Way Slabs Under Concentrated Loads,” ACI Structural Journal, V. 85, No. 2, Mar.-Apr. 1988, pp. 150-157.
29. Elstner, R. C., and Hognestad, E., “Shearing Strength of Reinforced Concrete Slabs,” ACI Journal Proceedings, V. 53, No. 7, July 1956, pp. 29-58.
30. Lima Neto, A. F., “Análise Experimental na Fase de Pós-Puncionamento de Lajes Cogumelo de Concreto Armado,” master’s thesis, Universidade de Brasília, Brasília, Brazil, 2003.
31. Forssell, C., and Holmberg, A., “Stämpellast pa plattor av betong,” 1946.
32. Carvalho, A. S., “de Análise Experimental de Laje Lisa de Concreto Armado de Alta Resistência com Metacaulim Apoiadas em Pilares Retangulares e Armada à Punção,” master’s thesis, Universidade Federal do Pará Centro Tecnológico, Belém-Pará, Brazil, 2006.
33. Damasceno, L. S. R., “Análise Experimental de Lajes Lisas Unidirecionais de Concreto Armado Com Pilares Retangulares ao Puncionamento,” master’s thesis, Universidada Federal Do Pará Instituto de Tecnologia, Belém-Pará, Brazil, 2007.
34. Vilhena, A.; Nahun, K.; Peres, M.; and Oliveira, D., “Análise Experimental de Lajes Unidirecionais com Pilares Retangulares ao Puncionamento Simétrico,” 48o Congresso Brasileiro do Concreto, 2006.
35. Moraes Neto, B. N., “Análise Experimental de Lajes Lisas Bidirecionais de Concreto Armado com Estribos Inclinados e Pilares Retangulares Sujeitas a Puncionamento Simétrico,” master’s thesis, Universidade Federal do Pará Centro Tecnológico, Belém-Pará, Brazil, 2006.
36. Mouro, V. C., “Punção em lajes cogumelo: estudo de retangularidade dos pilares,” master’s thesis, Universidade Federal de Goiás, Goiânia, Brazil, 2006.
37. Borges, L. L. J., “Comportamento ao puncionamento de lajes cogumelo de concreto armado com pilares retangulares e furos de grandes dimensões,” doctoral thesis, Universidade de Brasília, Brasília, Brazil, 2007.
38. Urban, T., “Nośność na Przebicie w Aspekcie Proporcji Boków Słupa,” Wydawnictwo Politechniki Łódzkiej, Łódź, Poland, 1994. (in Polish)
39. Yitzhaki, D., “Punching Strength of Reinforced Concrete Slabs,” ACI Journal Proceedings, V. 63, No. 5, May 1966, pp. 527-542.
40. Rosenthal, I., “Experimental Investigation of Flat Plate Floors,” ACI Journal Proceedings, V. 56, No. 8, Aug. 1959, pp. 153-166.
41. Milligan, G. J.; Zhang, Q.; and Polak, M. A., “Effect of Support Geometry on the Punching Shear Behaviour of Reinforced Concrete Flat Slabs,” Design of Slabs for Serviceability and Punching Shear Strength: Honoring Professor Amin Ghali, SP-353, American Concrete Institute, Farmington Hills, MI, 2022, pp. 29-49.
42. Petersson, E., “Crack Growth and Development of Fracture Zones in Plain Concrete and Similar Materials,” PhD dissertation, Lund Institute of Technology, Lund, Sweden, 1981.
43. Comité Euro-International du Béton, “CEB-FIP Model Code 1990: Design Code,” Thomas Telford, London, UK, 1993.
44. Dassault Systemes Simulia Corp, “ABAQUS Analysis User's Guide 6.13,” Providence, RI, 2013.
45. Genikomsou, A. S., and Polak, M. A., “Effect of Openings on Punching Shear Strength of Reinforced Concrete Slabs—Finite Element Investigation,” ACI Structural Journal, V. 114, No. 5, Sept.-Oct. 2017, pp. 1249-1262. doi: 10.14359/51689871
46. ACI Committee 318, “Building Code Requirements for Reinforced Concrete (ACI 318-63),” American Concrete Institute, Farmington Hills, MI, 1963, 144 pp.
47. Shu, J.; Belletti, B.; Muttoni, A.; Scolari, M.; and Plos, M., “Internal Force Distribution in RC Slabs Subjected to Punching Shear,” Engineering Structures, V. 153, 2017, pp. 766-781. doi: 10.1016/j.engstruct.2017.10.005
48. Vaz Rodrigues, R., “Shear Strength of Reinforced Concrete Bridge Deck Slabs,” PhD thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2007.
49. Vaz Rodrigues, R.; Fernández Ruiz, M.; and Muttoni, A., “Shear Strength of R/C Bridge Cantilever Slabs,” Engineering Structures, V. 30, No. 11, 2008, pp. 3024-3033. doi: 10.1016/j.engstruct.2008.04.017
50. SIA, “Code 262 for Concrete Structures,” Swiss Society of Engineers and Architects, Zürich, Switzerland, 2013.
51. Milligan, G. J., “Nonlinear Finite Element Analysis of Punching Shear of Reinforced Concrete Slabs Supported on Rectangular Columns,” master’s thesis, University of Waterloo, Waterloo, ON, Canada, 2018.
52. Santos, J. B.; Souza, R. M.; Melo, G. S.; and Gomes, R. B., “Punching Resistance of Flat Slabs with Openings Adjacent to the Columns,” ACI Structural Journal, V. 119, No. 1, Jan. 2022, pp. 41-53.
53. Milligan, G. J., “Nonlinear Finite Element Analysis of Influence of Support Geometry on the Punching Shear Behaviour of Reinforced Concrete Slabs,” PhD thesis, University of Waterloo, Waterloo, ON, Canada, 2023.
54. CSA A23.3:19, “Design of Concrete Structures,” Canadian Standards Association, Toronto, ON, Canada, 2019.